Predicting the Success of ESA in EUMDS Patients Using XAI

> Gunjan Chandra University of Oulu

Introduction

ESAS ARE EXPECTED TO ENHANCE THE QUALITY OF LIFE FOR MDS PATIENTS BY INCREASING HAEMOGLOBIN LEVELS AND REDUCING ANAEMIA SYMPTOMS.

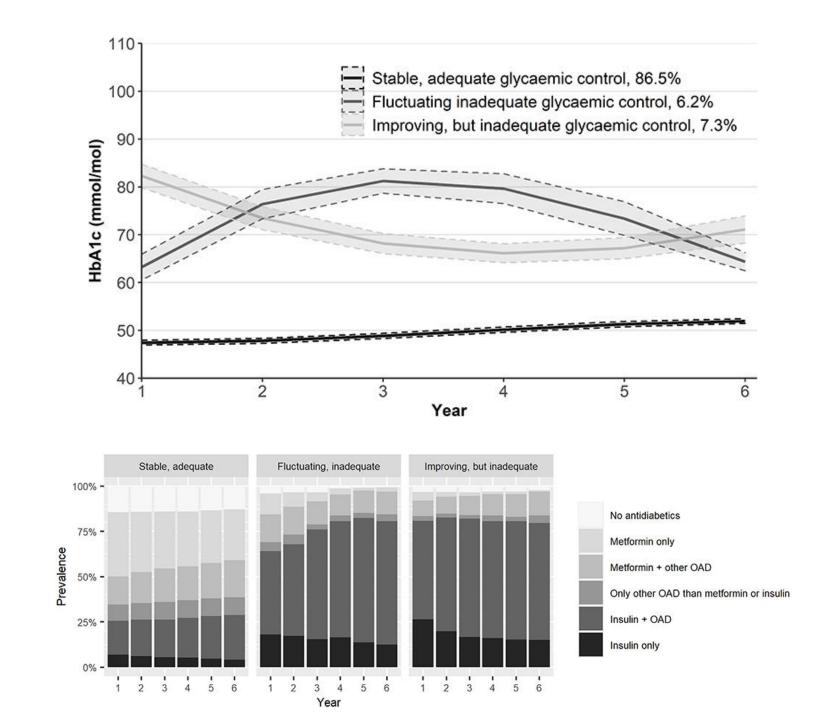
Objectives

- Determine ESA Effectiveness
- Factors Influencing ESA Effectiveness
- Duration of Individualised Treatment Response
- Exploring ESA Treatment Resistance

Clinical Epidemiology

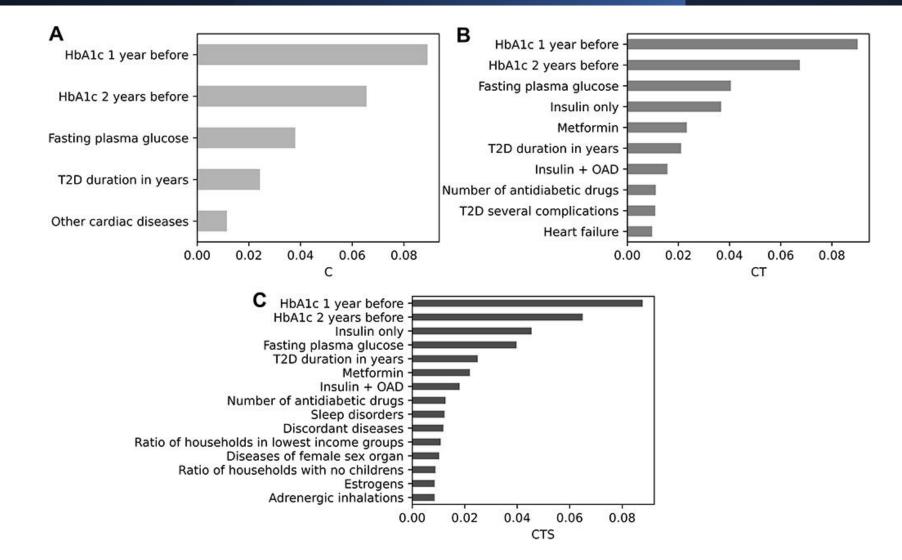
Open Access Full Text Article

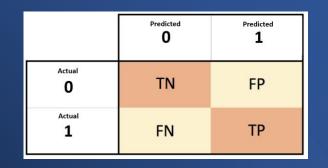
ORIGINAL RESEARCH

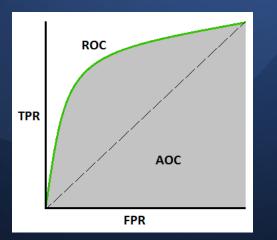

Data-Driven Identification of Long-Term Glycemia Clusters and Their Individualized Predictors in Finnish Patients with Type 2 Diabetes

Piia Lavikainen (1,*, Gunjan Chandra (2*,*, Pekka Siirtola (2*, Satu Tamminen (2*, Anusha T Ihalapathirana (2*, Juha Röning (2*, Tiina Laatikainen (2*, Janne Martikainen (2*)

¹School of Pharmacy, University of Eastern Finland, Kuopio, Finland; ²Biomimetics and Intelligent Systems Group, Faculty of ITEE, University of Oulu, Oulu, Finland; ³Joint Municipal Authority for North Karelia Social and Health Services (Siun Sote), Joensuu, Finland; ⁴Department of Public Health and Social Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland; ⁵Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland


*These authors contributed equally to this work

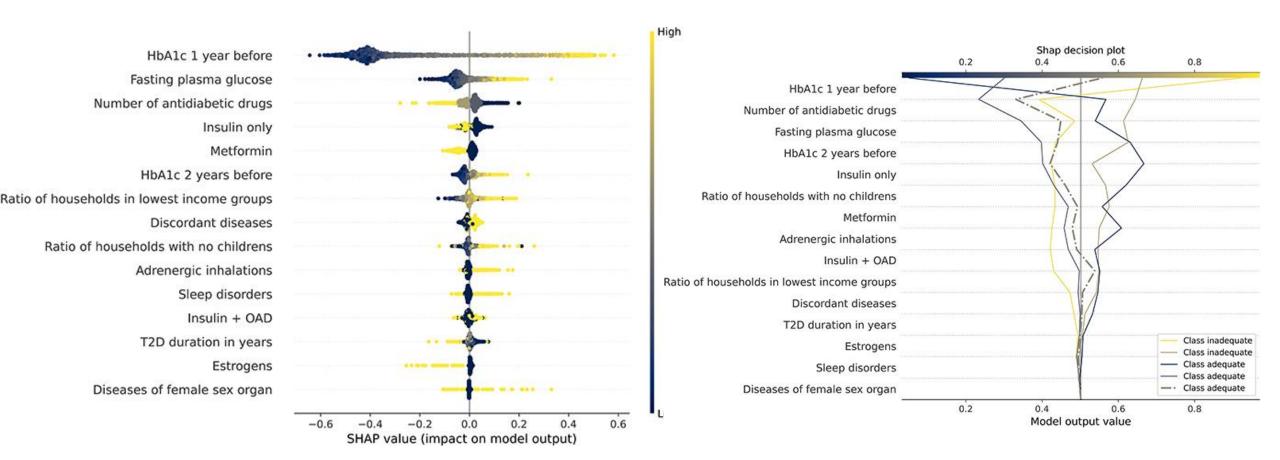

Three distinguished HbA1c trajectories over six years


Feature Importance

Type of Predictors	Total Number of Predictors	Number of Selected Predictors
Clinical (C)	83	5
Clinical + Treatment (CT)	233	10
Clinical + Treatment + SES (CTS)	299	15

Model Performance

Predictors	Model	Confusion Matrix		FI Score	Balanced Accuracy	ROC AUC		
Clinical	LDA	True	Predi	icted	Class	0.69	0.84	0.92
			4394	726	Adequate			
			68	329	Inadequate			
	NN	True	Predi	icted	Class	0.66	0.85	0.91
			4191	929	Adequate			
			47	350	Inadequate			
Clinical + Treatment	LDA	True	Predi	icted	Class	0.69	0.85	0.92
			4405	715	Adequate			
			67	330	Inadequate			
	NN	True	Predi	icted	Class	0.66	0.85	0.91
			4202	918	Adequate			
			48	349	Inadequate			
Clinical + Treatment + SES	LDA	True	Predi	icted	Class	0.69	0.84	0.92
			4402	714	Adequate			
			70	326	Inadequate			
	NN	True	Predi	cted	Class	0.66	0.84	0.91
			4249	867	Adequate			
			57	339	Inadequate			


Abbreviations: LDA, linear discriminant analysis; NN, neural network; ROC AUC; receiver operating characteristic area under the curve; SES, socioeconomic status.

- Machine learning models that rely only on known risk factors yield moderate prediction accuracy.
- Feature selection methods have the potential to improve the prediction of medical outcomes.
- Boosting machine learning algorithms are more effective at predicting medical outcomes.
- Socioeconomic factors, physical health, and mental health impact the prediction of medical outcomes.

Outcome	Models built using statistically identified prognostic / risk factors	Models built using features selected through ML methods	Statistical model		
Relapses (MS)	AUC – 0,67 BA – 0,66 F1 score – 0,71	<u>Male</u> AUC – 0,70 BA – 0,70 F1 score – 0,84	AUC – 0,65		
		<u>Female</u> AUC – 0,69 BA – 0,68 F1 score – 0,76			
Severe hypoglycemia (T1D)	AUC – 0.65 BA – 0,66 F1 score – 0,65	<u>Male</u> AUC – 0,88 BA – 0,85 F1 score – 0,84	-		
		<u>Female</u> AUC – 0,82 BA – 0,79 F1 score – 0,84			
Diabetic Ketoacidosis (T1D)	AUC – 0,69 BA – 0,68 F1 score – 0,78	AUC – 0,85 BA – 0,83 F1 score – 0,78	-		

Explainable Artificial Intelligence to predict clinical outcomes in type 1 diabetes and relapsing-remitting multiple sclerosis adult patients

Global and Local Explaination

Data Requirements for EUMDS Model Building

- Success of ESAs:
 - Baseline Variables at ESA Decision: Inclusion of relevant patient characteristics and disease markers at the time the decision to administer ESAs is made.
 - **ESA Administration Timestamps:** Precise records of when ESAs were administered.
 - Historical Visit Data: Incorporating older visit data if available to capture the patient's medical history.
 - Target Variable for ESA Success: An indicator variable distinguishing successful responses from non-responses.
- Time to ESAs (for patients with ESA success):
 - All of the Above: Continued monitoring of baseline variables, ESA administration timestamps, and historical data.
 - **ESA Response Timestamps:** The time intervals to successful response, recorded in terms of months, weeks, or days.
 - Target Variable for Time to ESA Response: A variable indicating the duration it took for the patient to achieve a successful response.
- Loss of Response (for patients with ESA success):
 - All of the Above: Maintaining a comprehensive dataset for baseline variables, ESA administration timestamps, historical data, and ESA response timestamps.
 - Follow-Up Visits Data: Ongoing data collection post-ESA administration until the loss of response occurs.
 - **Target Variable for Loss of Response:** An indicator variable marking the point at which the patient's ESA response was lost, with reference to time and events.

Questions?