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A patient with RRMS
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Dimethyl fumarate 1.24 [0.84, 1.83] - 0.71 [0.54, 0.94]

1.17 [0.84, 1.66] Glatiramer acetate - 0.63 [0.45, 0.89]

2.3 [1.4, 3.7] 1.95 [1.16, 3.28] Natalizumab 0.31 [0.20, 0.46]

0.71 [0.54, 0.93] 0.60 [0.44, 0.83] 0.31 [0.20, 0.47] Placebo

NMA estimates

Direct estimates

3 randomized RCTs with IPD 

2990 observations

Treatments
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acetate

Natalizumab
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Treatments

Prognostic Factors

Effect modifiers

HTE

Risk score

Prediction model with IPD network meta-

regression using only the risk score
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Prediction model using IPD network 
meta-regression with many covariates
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Risk modelling for predictions
• Risk modelling: treatment effect variability is modelled as a 

function of outcome risk – and outcome risk is a function of the 
covariates

• Reduces the risk of overfitting 
• Second stage: treatment effect heterogeneity is modelled with a single 

covariate (the risk score)

• First stage: We take advantage of the existing penalisation methods

• Assumptions: the heterogeneous treatment effects are proportional to 
the main effects of the covariates vector

A tutorial on individualized treatment effect prediction from randomized trials with a binary 
endpoint, Hoogland et al. Stat Med 2021
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HTE

Risk score

Prediction model using IPD network 

meta-regression using only the risk score

Prognostic model 
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#STAGE1

#STAGE2
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Development of prognostic risk scores (Stage 1)

Two prognostic models using all data, not just placebo arms 

LASSO model Pre-specified model

Prognostic factors: 14 prognostic factors 

identified by Pellegrini et al. for annualized 
relapse rate
Shrinkage of coefficients: penalized maximum 
estimation likelihood (ridge regression)

Prognostic factors:  9/28 selected via LASSO 

Shrinkage of coefficients: LASSO shrinkage of 
coefficients

Burke et al. Circ Cardiovasc Qual Outcomes 2014

PATH statement  by Kent et al AIM 2020 

The resulting risk score has low discrimination (C=62%) but we don’t mind!
The aim of this stage is to reduce dimensionality, not to provide predictions!
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OR drug vs placebo at the 

study mean logit-risk 
exp(D)

OR drug vs placebo for one unit 
increase in the logit-risk 

exp(G)

Natalizumab 0.18 0.67

Glatiramer Acetate 0.41 0.87

Dimethyl Fumarate 0.43 1.06

OR relapse for one unit increase in logit-risk in untreated patients (placebo) exp(B) = 3.32. 

IPD network meta-regression (stage 2)
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Treatment Mean
Less than 

30% risk

More than 

50% risk

Natalizumab 46% 23% 69%

Glatiramer 

Acetate
56% 23% 86%

Dimethyl 

Fumarate
53% 20% 84%

Low risk: Best treatment Dimethyl Fumarate

no added benefit of Natalizumab

High risk: Best treatment Natalizumab

15% absolute benefit compared to Dimethyl Fumarate

Predicted relapse rate by baseline risk score
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Clinical relevance of a prediction model

• Implementation of a prediction model does not necessarily lead to better 

decisions

• Compare the strategy “Choose the treatment according to model” vs “Treat 

everyone with Natalizumab” vs “Treat everyone with Dimethyl Fumarate”  

vs “Treat no one”

• We compare the strategies in terms of Net Benefit within a decision curve 

analysis; a technique that investigates whether making clinical decisions  

based on a model would do more good than harm. Vickers et al. Med Decis

Making.2006

• Previously applied for a single intervention vs reference and primarily within 

an RCTs



Generalized Net Benefit for many alternative treatment strategies
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.' the event rate under no treatment

.( the event rate under strategy /
0()* the proportion of patients treated with treatment 1 under strategy /

Reduction in a 
harmful event rate

proportion of people who will 
take the treatment (and its 

side effects) 

× the treatment threshold 

(“exchange rate”)

Treatment threshold 2* is the anticipated benefit that will lead to choosing treatment j, after considering its 

safety and tolerability. 

2+ # 34

2+ # 354

Natalizumab has issues 

with safety



Generalised Net Benefit
number of fewer patients with relapse per 100 participants 





Conclusions & limitations

• We extended the risk modelling approach for network meta-regression 

• The model is time-consuming

• We haven’t evaluated the perfomance of the second stage – see Efthimiou
et al. Stat Med 2023

• Needs IPD from each drug

• The work ended being methodological as it does not reflect the real need
of RRMS patients (in terms of outcomes and treatments)

• We extended the DCA methodology into multidimensional setting

• We have some estimation problems in DCA: small congruent datasets, 
missing drugs

• Patient surveys are needed to identify the range of threshold values in 
which patients are interested in 

• Results depend on which range of thresholds one considers realistic



Thank you!
Questions?



Adjustment for baseline covariates
from https://www.fharrell.com/post/covadj/

• There may be 3 compelling arguments in favor of conditioning on baseline 
covariates when we consider binary outcomes.

• Interpretation and statistical power
• Hauck et al, 1998 recommend that the primary analyses adjust for important 

prognostic covariates in order to come as close as possible to the clinically most 
relevant subject-specific measure of treatment effect. Additional benefits would be an 
increase in efficiency of tests for no treatment effect and improved external validity.

• Robinson & Jewell 1991 the estimated treatment effect after adjustment is more 
precise (for non-liner models like logistic)

• Correction for baseline imbalance 
• Steyerberg et al 

https://www.ncbi.nlm.nih.gov/pubmed/9620808
https://www.jstor.org/stable/1403444
https://pubmed.ncbi.nlm.nih.gov/10783203/


Generalized Net Benefit for many alternative treatment strategies
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0()* the proportion of patients treated with treatment 1 under strategy /
Estimated from the congruent dataset for strategy !" #$%$!

Congruent dataset &he subset of the original #$%$ including those patients where recommended 
treatment = actual given treatment

Using #$%$!, we estimate each '!,# as the pooled proportion of people under each treatment (

Estimation



Generalized Net Benefit for many alternative treatment strategies

!"! #$%"&%! &'
#

(!,# )*#
.( the event rate under strategy /
Estimate pooled placebo event rate )*!,$

Estimate NMA risk ratio of each treatment versus the control from the congruent dataset ++#
%&'&!

Estimate the treatment-specific event rates as )*!,# , )*!,$- ++#
%&'&!

Estimation


