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Average treatment effects (ATE) are at the heart of clinical and policy decision making, 

used to derive incremental cost-effectiveness ratio and incremental net benefits.

More nuanced decision-making accounting for heterogeneity in treatment effect may 

yield greater population health gains [1-3].

Clinicians and payers have focused more on considerations at the subgroup- and 

individual levels. 

Patients and clinicians want to know what the outcomes of a treatment is for them, not 

for an average individual.

The individualized treatment effect  (𝐼𝑇𝐸) for 

individual 𝑖 with a vector of individual-specific 

predictors 𝑋 = 𝑥𝑖 can be defined as:

𝐼𝑇𝐸 𝑥𝑖 = 𝐸[𝑌𝑖
𝑎=1|𝑋 = 𝑥𝑖]−𝐸[𝑌𝑖

𝑎=0|𝑋 = 𝑥𝑖]

The 𝐴𝑇𝐸(𝐸[𝑌𝑖
𝑎=1]−𝐸[𝑌𝑖

𝑎=0]) is equal to the 

average of the 𝐼𝑇𝐸𝑠 𝐸[𝑌𝑖
𝑎=1 − 𝑌𝑖

𝑎=0 .

Identification Assumptions of ITE are the same 

as ATE, including consistency, conditional 

exchangeability, positivity, no interference.

1. What Data Is Required for ITE Estimation?

ITE is essentially a highly conditional average treatment effect and can be realistically 

derived from large, well-designed, real-world studies.

2. Why use machine learning (ML) to Estimate ITE?

ML identify potential subgroups and select covariates (NICE real-world evidence 

framework June 2022). ML flexibly model complex interactions between treatment and 

high-dimensional individual characteristics. ML are not substitutes for content knowledge 

and clinicians’ opinions.

3. Uncertainty Quantification makes ML more trustworthy and facilitate safer and more 

consistent treatment decisions.

4. Parameters focus on TTE outcome, baseline risk, related measures of treatment effect, 

HRQoL and costs.

Risk of Bias in Causal Inference

• General to All Observational Studies

1. Selection Bias

2. Confounding

3. Collider Bias

4. Measurement Error

• Specific to Longitudinal Analysis

1. Loss to Follow-Up

2. Exposure Affected Time-varying Confounding

3. Immortal Time Bias

We extract data based on:

• the available data (cross-sectional or longitudinal);

• the outcome of interest (continuous, binary or TTE);

• whether handle observed or unobserved confounders;

• whether quantify uncertainties of treatment effects or predicted outcomes;

• software implementation (R, Python or Stata).

Most ML methods:

• are designed for binary or continuous outcomes, require large samples;

• handle baseline confounding, assume no hidden confounding;

• not quantify uncertainty of both the predicted outcomes and treatment.

In chronic conditions, treatments are sustained over time and dynamic treatment 

regimes may be of interest.

Survival model should account for potential bias from:

• non-randomised treatment assignment (confounding),

• informative censoring,

• event-induced covariate shift [17].

Modeling competing risks is another challenge.

1. Most ML for ITE estimation can handle confounding at baseline but not time-varying or 

hidden confounding.

2. ML accounting for time-varying confounding are developed mostly for use with 

continuous or binary outcomes.

3. Most ML methods do not quantify uncertainty of treatment effects estimates or predicted 

outcomes, especially in longitudinal settings. 

4. Modeling assumptions should be properly assessed before making causal conclusions.

5. No ML can estimate ITE for TTE outcomes AND account for time-varying confounders.

Reference
[1] Douglas Coyle, Mart in J Buxton, and Bernie J O’Brien. St ratified cost-effectiveness analysis: a framework for establishing efficient limited use criteria. Health Economics, 12(5):421–427, 2003.
[2] Mark Sculpher. Subgroups and heterogeneity in cost-effectiveness analysis. Pharmacoeconomics, 26(9): 799–806, 2008.
[3] Manuel A Espinoza, Andrea Manca, Karl Claxton, and Mark J Sculpher. The value of heterogeneity for cost-effectiveness subgroup analysis: conceptual framework and application. Medical Decision Making, 34(8): 951–964, 2014.
[4] Hugh A Chipman, Edward I George, and Robert  E McCulloch. Bart : Bayesian addit ive regression t rees. The Annals of Applied Statistics, 4(1):266–298, 2010.
[5] Jennifer L Hill. Bayesian nonparametric modeling for causal inference. Journal of Computational and Graphical Statistics, 20(1):217–240, 2011.
[6] Rodney Sparapani, Charles Spanbauer, and Robert  McCulloch. Nonparametric machine learning and efficient computation with bayesian additive regression trees: the bart r package. Journal of Statistical Software, 97: 1–66, 2021.
[7] Susan Atheyand Guido Imbens. Recursive part itioning for heterogeneous causal effects. Proceedings of the National Academy of Sciences, 113(27):7353–7360, 2016.
[8] Stefan Wager and Susan Athey. Est imation and inference of heterogeneous t reatment effects using random forests. Journal of the American Statistical Association, 113(523):1228–1242, 2018.
[9] Ahmed M Alaa and Mihaela van der Schaar. Bayesian inference of individualized t reatment effects using mult i-task gaussian processes. arXiv preprint arXiv:1704.02801, 2017.
[10] Ahmed Alaa and Mihaela Schaar. Limits of est imating heterogeneous t reatment effects: Guidelines for pract ical algorithm design. In International Conference on Machine Learning, pages 129–138. PMLR, 2018.
(note: The full reference list is available upon request). 

Figure 1: Optimal treatment strategy based on 
potential outcomes 

Table 1: Methods to Estimate ITE in Static Settings
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Figure 2: Confounding

Figure 3: A taxonomy of statistical and machine learning individualized treatment effects estimation 
methods for use in HTA

Table 2: Methods to Estimate ITE in Longitudinal Settings

Method Baseline confounding Time-varying 

confounding

Outcome Uncertainty Software

Bayesian Non-parametric Observed Observed Continuous Counterfactual No

Bayesian Treatment 

Response Curves

No No Continuous Counterfactual No

Counterfactual Gaussian 

Process

Observed Observed Continuous Counterfactual No

Recurrent Marginal Structural 

Networks

Observed Observed Continuous, 

Binary

No Python: RMSN

Counterfactual Recurrent 

Network

Observed Observed Continuous, 

Binary

No Python: CRN

Deep Sequential Weighting Observed, 

Unobserved 

Observed, 

Unobserved 

Continuous No Python: DSW

SyncTwin Observed Observed Continuous No Python: synth_control

Time Series Deconfounder Observed, 

Unobserved 

Observed, 

Unobserved 

Continuous, 

Binary

No Python: Time Series 

Deconfounder

Causal Dynamic Surv ival 

model

Observed No TTE Counterfactual, 

Treatment Effect

Python: CDS

Method Confounding Outcome Uncertainty Software

Bayesian Additive Regression Trees, Bayesian 

Causal Forest

Observed Continuous, Binary Counterfactual, 

Treatment Effect

R: BART, bartCause, bcf

Causal Forest, Causal Multi-task Gaussian 

Processes, Non-stationary Gaussian 

Processes

Observed, Unobserved Continuous, Binary Counterfactual, 

Treatment Effect

R: randomForestSRC, grf, 

BayesTree, causalForest

Virtual Twins Random Forests(VT), VT 

interaction, Counterfactual Random Forest 

(RF), counterfactual synthetic RF, Bivariate RF

Observed Continuous, Binary Counterfactual, 

Treatment Effect

R: aVirtualTwins, 

model4you

Balancing Neural Network Observed Continuous, Binary No No

Treatment-Agnostic Representation Network Observed Continuous, Binary Treatment Effect Python: cfrnet

Local Similarity Preserved Individual 

Treatment Effect

Observed Continuous, Binary No Python: SITE

Deep Counterfactual Networks with 

Propensity-Dropout

Observed Continuous, Binary Treatment Effect Python: DCN-PD

Multi-Task Deep Learning and K-Nearest 

Nighbours

Observed Continuous, Binary No Python: CNN

Generative Adversarial Nets for inference of 

Indiv idualised Treatment Effects

Observed Continuous, Binary Counterfactual Python: GANITE

Person-Centered Treatment Effects Using a 

Local Instrumental Variables

Observed, Unobserved Continuous, Binary Counterfactual, 

Treatment Effect

Stata: petiv

Counterfactual Surv ival Analysis Observed TTE Counterfactual, 

Treatment Effect

Python: CSA

Surv ITE Observed TTE No Python: Surv ITE

Cox Proportional Hazards Deep Neural 

Network

No TTE Counterfactual Python: DeepSurv

Non-Parametric Accelerated Failure Time Observed TTE Counterfactual, 

Treatment Effect

R: AFTrees

Non-Parametric Bayesian Additive 

Regression Trees within the framework of 

accelerated failure time mode

Observed TTE Counterfactual, 

Treatment Effect

R: AFT-BART-NP

Random Surv ival Forests Observed TTE Treatment Effect No

Causal Surv ival Forest Observed TTE Treatment Effect R: grf

Deep Multi-task Gaussian Processes Observed TTE Counterfactual, 

Treatment Effect
Python: DMGP
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