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MACHINE LEARNING
METHODS FOR
HEALTHCARE DATA
ANALYSIS




WHAT IS MACHINE
LEARNING?

Machine learning Is a type of artificial
intelligence (Al) that enables computers
to learn from data and experience,
rather than being explicitly
programmed.




TYPES OF
MACHINE
LEARNING

Supervised learning uses
labelled data to predict
an output variable.

Reinforcement learning
learns from feedback to
make decisions that
maximize a reward.

Unsupervised learning
looks for patterns or
structure in unlabelled
data.

There are also subtypes
and variations of
machine learning
algorithms, and specific
techniques for specific
tasks.



Class B

Classification predicts a categorical
output variable based on input.

SUPERVISED LEARNING
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UNSUPERVISED
LEARNING

- Clustering
- Dimension reduction
- Anomaly detection
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DATA-DRIVEN
IDENTIFICATION OF
LONG-TERM GLYCEMIA
CLUSTERS AND THEIR
INDIVIDUALIZED
PREDICTORS IN FINNISH
PATIENTS WITH TYPE 2
DIABETES



DATA PRE--
PROCESSING

Data cleaning: This involves detecting and correcting
errors or inconsistencies in the data.

Data transformation: This involves transforming the data
Into a suitable format for ML algorithms.

Feature engineering: This involves selecting and creating
relevant features from the raw data that can improve the
performance of ML algorithms.

Data integration: This involves combining data from
multiple sources to create a more comprehensive dataset
for analysis.



import pandas as pd

import numpy as np

from sklearn.impute import SimpleImputer

from sklearn.preprocessing import LabelEncoder, OneHotEnceoder, StandardScaler
from sklearn.feature_selection import SelectkKBest, chi2

# Load the dataset
data = pd. ('data.csv')

# Drop the rows with missing values
data. [inplace= }

# Transform categorical variables to nmumerical

labelencoder = ()

datal'Gender'] = labelencoder. (datal'Gender'])

onehotencoder = ()

data = pd. {data, columns=['Education', 'Marital Status'], prefix=['Education’', 'Marital'l}

# Create new features
data['Age Income Ratio'] = datal'Age'] / datal'Income’']
data['Credit Score Income Ratio']l = data['Credit Score'] / datal'Income']

# Merge data from multiple sources
dataz = pd. {'dataZ.csv'}
dataset = pd. (data, data2, on='Patient ID'}

# split data into traiming and testing sets
from sklearn.model_selection import train_test_split
¥X_train, X_test, y_trainm, y_test = (dataset. ('target', axis=1),dataset['target'], test_size=0.2, random_state=0)

# Preprocess data using StandardScaler
scaler = ()

X_train = scaler. (¥_traim)
¥ _test = scaler. (X_test)

# Impute missing values

imputer = (strategy="'mean')
X_train = imputer. {X_train}
X_test = imputer. (X_test)

# Feature selectiom usimg chi2

from sklearn.feature_selection import SelectkBest, chi2
selector = {chi2, k=5)

X _train = selector. (X_train, y_train)
X_test = selector. (¥X_test)




FEATURE IMPORTANCE AND
SELECTION
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from sklearn.model_selection import KFold
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score

# Define the models to evaluate
models = [('Linear Discriminant Analysis', ()},
{'MLP Classifier’, {hidden_layer sizes=(10@,)}})]

# Define the number of folds for k-=fold cross-=validation

n_folds = 4

# S5plit data into k-=folds and evaluate each model on each fold
for model_name, model in models:
kfold = {n_splits=n_folds, shuffle= , random_state=42)
scores = []
for train_idx, test_idx in kfold. (X, y):
X_train, y_train = X[train_idx], y([train_idx]
X_test, y_test = X[test_idx], y[test_idx]
model. Tit(X_train, y_train)
score = model. (X_test, y_test)
scores. (score)
mean_score = (scores) / n_folds
(7'{model_name}: {mean_score:.3f}')

MODEL
SELECTION,
1T RAINING,
AND
HVALUATION
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Accuracy vs Interpretability Trade-o

Model accuracy

‘ Hybrid modelling approaches
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# Create a SHAP explainer object for the trained
explainer = shap. (model, X_train)

# Generate a SHAP Bee Swarm plot for the first 108 test samples
shap_values = (X_test[:100])
shap.plots. (shap_wvalues)

shap. (explainer.expected _value, shap_values[@], X_test[@])
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