
Yingying Zhang¹ Noemi Kreif¹ Alastair Bennett¹ Vijay Gc² Andrea Manca¹
1. Centre for Health Economics, University of York, York, UK 2. School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK
contact emails: yingying.zhang@york.ac.uk, andrea.manca@york.ac.uk

Introduction

• The paper uses the European Myelodysplastic Syndromes Registry and estimates average treatment effects (ATE) of using erythropoiesis-stimulating agents (ESA).
• We compare patients having initiated/received ESA for certain time periods with patients having never ever received ESA for the same amount of time.
• We account for time-varying confounding that affect both the treatment decisions and patient outcomes

Longitudinal TMLE

• Double Robust
only one of outcome (Q) or intervention mechanism (g) is needed for consistency of the final estimate
• Machine Learning
super learner algorithm can be used to estimate components of Q and g while retaining valid statistical inference.
• Uncertainty
SEs are correct asymptotically when estimates of Q and g are both consistent, and are conservative when only g is estimated consistently.
• Various Outputs
mean outcomes for treatment and control groups; ATE, ATT, causal risk ratio/ causal odds ratio

Data and Variables

One observation O is coded as

\[O = (L_0, A_0, C_0, Y_1, ..., L_T, A_T, C_T, Y_{T+2}) \]

\(L \) nodes are confounders (baseline and time-varying)

\(A \) nodes are treatment nodes, 1 if being in the ESA group and 0 not

\(C \) nodes are censoring nodes, 1 if being uncensored and 0 not

\(Y \) nodes are outcomes including EQ-5D scores and cumulative survival probabilities.

Baseline confounders: Age at baseline, MDS co-morbidity index

time-varying confounders: haemoglobin levels
time-varying covariates: haemoglobin levels, bone marrow blasts greater than or equal to 5%, Karnofsky performance status, platelets count categories, absolute neutrophil count (not confounders so for simplicity not presented on the DAG, but are used to predict \(Y \))

Super Learner

• SL algorithm uses cross-validation to find the optimal weighted convex combination of multiple candidate prediction algorithms.
• Machine learning algorithms can improve the specifications of Q and f functions.
• The algorithms we use include generalized linear model, Stepwise regression, neural network, generalized additive models, Elastic net

Findings

• Using ESA appears not to have very significant effect on patients’ EQ5D or on their cumulative survival probabilities across varying treatment time periods.
• Super learner algorithms may help reduce the bias of the predicted ATEs and intervention-specific mean outcomes.

Samples: 440 individuals for the QoL analysis, 519 individuals for survival analysis
• We assume patients who have started ESA would not stop taking ESA before they are censored, and compare them with patients having never ever taken ESA for the same amount of time.
• We account for time-varying confounding that affect both the treatment decisions and patient outcomes

Funding: This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 825162. This dissemination reflects only the authors’ view and the Commission is not responsible for any use that may be made of the information it contains. HTx is a Horizon 2020 project supported by the European Union’s funding for 5 years from January 2019. The main aim is to create a framework for the Next Generation Health Technology Assessment to support patient-centred, evidence-based, real-time decision-making on access to and reimbursement for health technologies through Europe.

Centre for Health Economics