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INTRODUCTION

e Severe hypoglycemia (SH) and diabetic ketoacidosis (DKA) are life-
threatening complications associated with type 1 diabetes (T1D).

e« The objective of this study is to implement an explainable Al (XAl) to
predict SH and DKA events in adult T1D patients over the next year, and
to develop a decision support system (DSS) to identify high-risk patients.

Dataset

« T1D Exchange Clinic Registry open dataset: 25759 T1D patient data
from the United States.

e The study focuses on 7155 patients aged 26 to 93 years with a T1D
duration of at least two years.
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SH prediction model for males
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Decision Support System

@ Patients with SH episodes in the training data
Patients without SH episodes in the training data
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Observations (Male patients)

Model Balanced
(XGBoost) accuracy F1 score AUC
Male - SH 85.9 84.0 88.3
Female - SH 79.6 84.9 82.0
DKA 83.1 /8.6 85.3

o CONCLUSION

e Boosting ML algorithms are more effective in predicting SH and DKA
outcomes.

e Gender differences, socioeconomic factors, and physical and mental
health are important in T1D outcome prediction.

e The performance of ML models is limited when they entirely rely on
iInformation from prior statistical studies to identify predictors.




