

UNIVERSITÄT

Cross-design and cross-data format synthesis using network meta-analysis

Presented by: Tasnim Hamza

Authors: Tasnim Hamza, Fabio Pellegrini, Jens Kuhle, Pascal Benkert, Suvitha Subramaniam, Sabine Schaedelin, Cynthia Iglesias, Andrea Manca, Konstantina Chalkou, Georgia Salanti

Conference of the Austro-Swiss Region (ROeS) of the International Biometric Society: 7 - 10 September 2021 | Salzburg, Austria

TH and GS are supported by the HTx-project which is funded from the European Union's Horizon2020 (No. 825162).

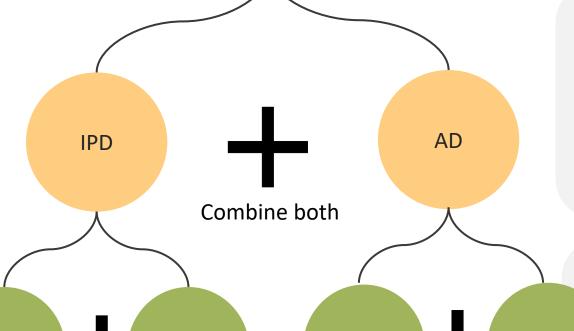
- Lengthy process, increased costs
- Inability to include IPD from all trials

- Overcome the AD shortcomings
- a gold standard
- analysis

RCT

- Standardize the

- Idealized settings
- Restricted inclusion criteria
- Limit generalizability
- 'Low' Bias
- Most reliable



NRS

RCT

NMA/

NMR

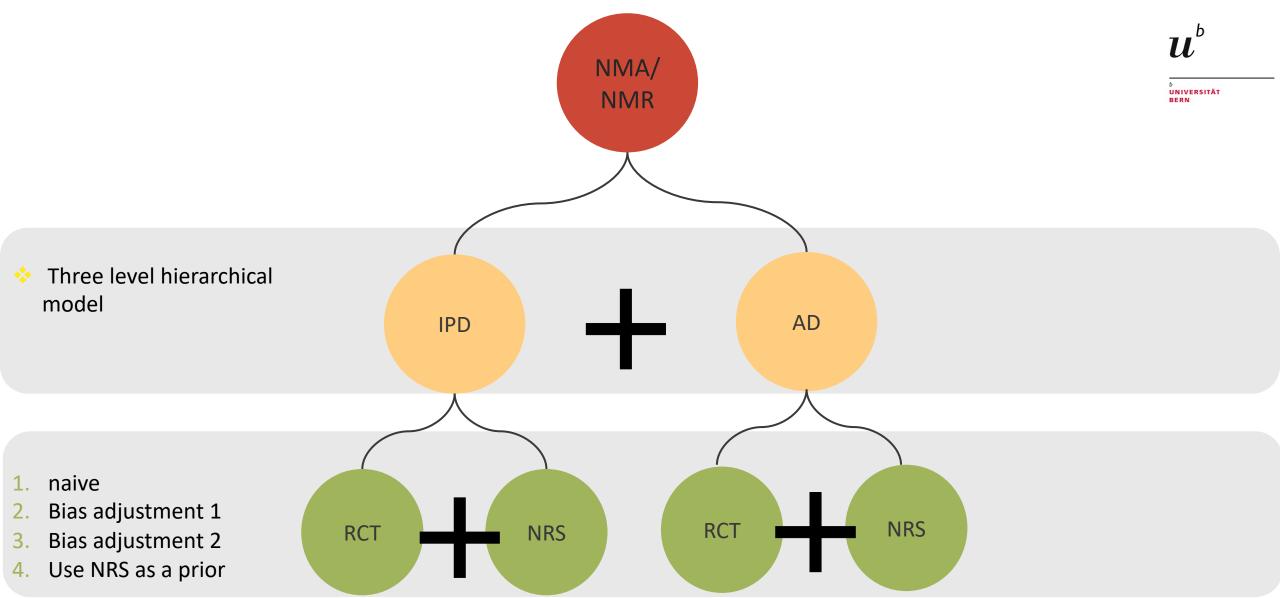
- Data is accessible in the published literature

- Heterogeneity across trials
- meta-regression on aggregate information
- Ecological bias

NRS

- More available
- Reflect the reality

- Bias
- Confounders are not addressed
- Concern about transitivity and consistency

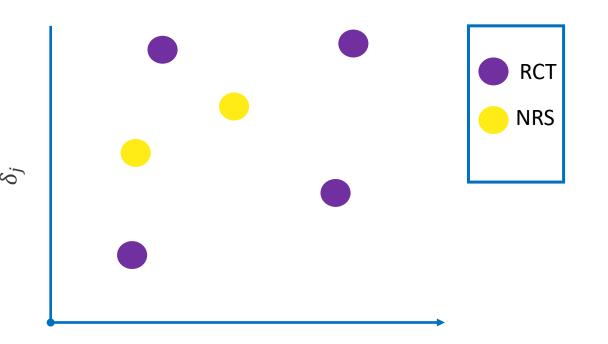


1. Cross NMR model naive

AD RCT and NRS

b UNIVERSITÄT BERN

Treatment effect in study j: δ_j



For j study with k treatment
$$r_{jk} \sim Bin(p_{jk}, n_{jk})$$

$$\log it(p_{jk}) = u_{jb} + \beta^B_{2,bk} \bar{x_j} + \delta_{jbk}$$

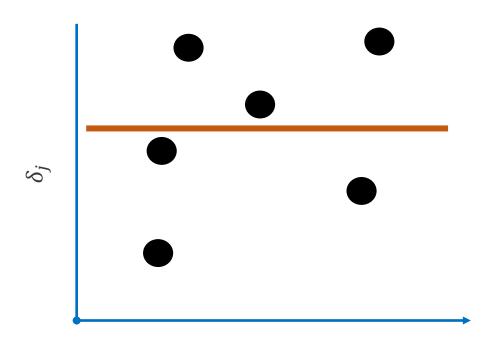
IPD RCT and NRS

For i individual in j study with k treatment $y_{ijk} \sim Bernoulli(p_{ijk})$ $\log it(p_{ijk}) = u_{jb} + \beta_{1j}x_{ij} + \beta_{2,bk}^W(x_{ij} - \bar{x}_j) + \beta_{2,bk}^B \bar{x}_j + \delta_{jbk}$

1. Cross NMR model naive

Combine AD and IPD

Treatment effect in study j: δ_j



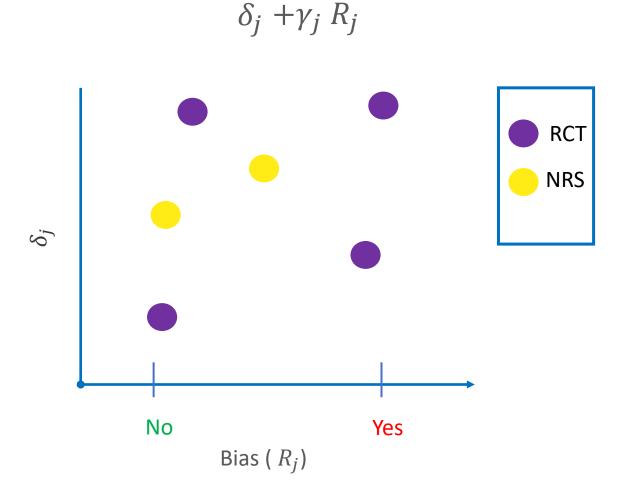
$$\delta_{jbk} \sim N(d_{Ak} - d_{Ab}, \tau^2),$$

$$\beta_{2,bk}^B \sim N(B_{Ak}^B - B_{Ab}^B, \sigma_B^2),$$

$$\beta_{2,bk}^W \sim N(B_{Ak}^W - B_{Ab}^W, \sigma_W^2),$$

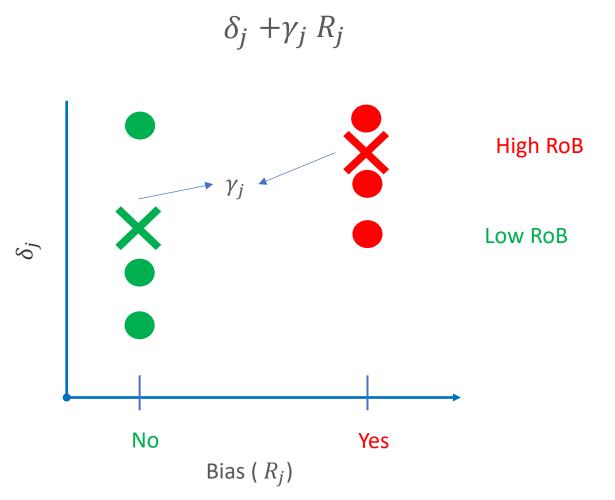
$$u_{jb}, \beta_{1j} \sim N(0, 10^2)$$

b UNIVERSITÄT BERN



b Universität Bern

AD RCT and NRS



For j study with k treatment
$$r_{jk} \sim Bin(p_{jk}, n_{jk})$$

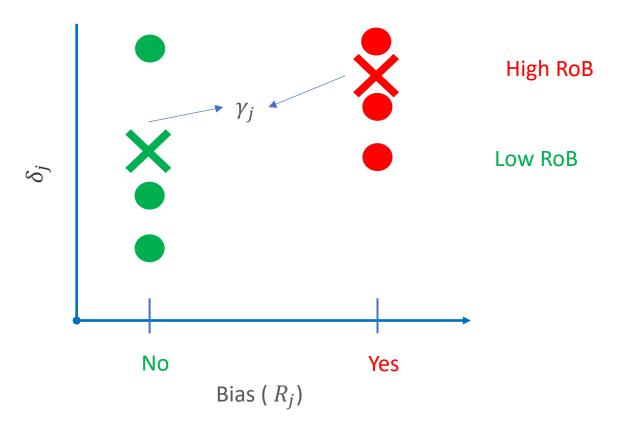
$$\log it(p_{jk}) = u_{jb} + \beta_{2,bk}^B \overline{x_j} + \delta_{jbk} + \gamma_j R_j$$

IPD RCT and NRS

treatment $y_{ijk} \sim Bernoulli(p_{ijk})$ $logit(p_{ijk}) =$ $u_{jb} + \beta_{1j}x_{ij} + \beta^{W}_{2,bk}(x_{ij} - \bar{x}_j) + \beta^{B}_{2,bk}\bar{x}_j + \delta_{jbk} + \gamma_j R_j$

For i individual in j study with k

$$\delta_j + \gamma_j R_j$$



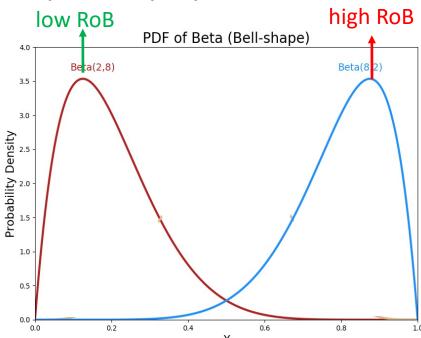
Bias assumptions

- 1. Bias effect: $\gamma_j \sim N(\Gamma, \sigma_\Gamma^2)$, $\gamma_j = \Gamma$
- 2. Bias indicator R_i :

We use the data from RoB tool Either directly (high=Yes ($R_j = 1$), low=No ($R_j = 0$)) \rightarrow RoB is subjective, uncertainty

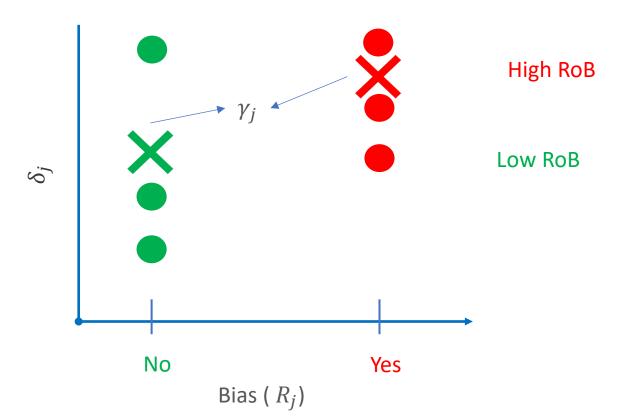
Give distributions

$$R_j \sim Bern(\pi_j), \pi_j \sim Beta(a, b)$$



b UNIVERSITÄT BERN

$$\delta_j + \gamma_j R_j$$



Bias assumptions

- 1. Bias effect: $\gamma_i \sim N(\Gamma, \sigma_{\Gamma}^2)$, $\gamma_i = \Gamma$
- 2. Bias indicator R_i :

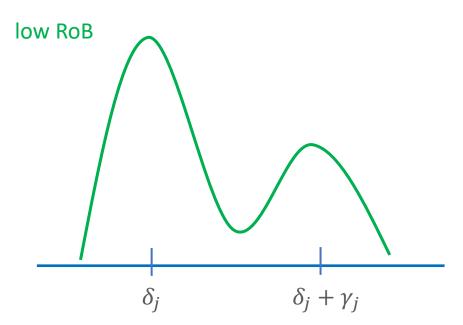
We use the data from RoB tool Either directly (high=Yes ($R_j = 1$), low=No ($R_j = 0$)) \rightarrow RoB is subjective, uncertainty

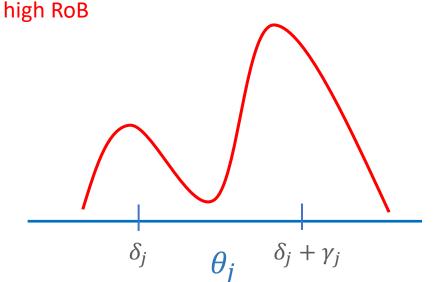
2. Use study characteristics'

$$logit(\pi_j) = a + b * z$$

$$\theta_{jbk} \sim \pi_j N(\delta_{jbk}, \tau^2) + (1 - \pi_j) N(\delta_{jbk} + \gamma_j, \tau^2 + \tau_\Gamma^2)$$

AD RCT and NRS





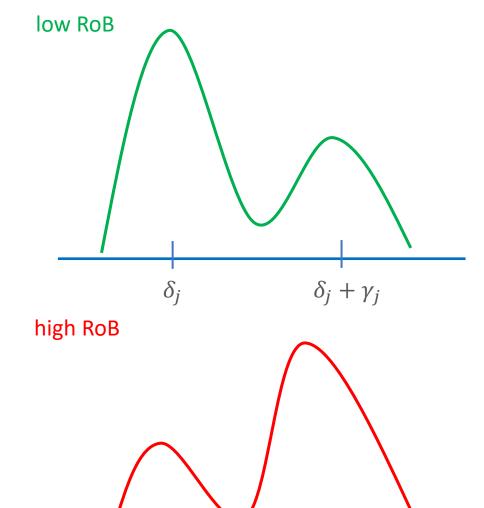
For j study with k treatment $r_{jk} \sim Bin(p_{jk}, n_{jk})$ $logit(p_{jk}) = u_{jb} + \beta_{2,bk}^B \overline{x_j} + \theta_{jbk}$

IPD RCT and NRS

For i individual in j study with k treatment $y_{ijk} \sim Bernoulli(p_{ijk})$ $\log it(p_{ijk}) =$ $u_{jb} + \beta_{1j}x_{ij} + \beta_{2,bk}^{W}(x_{ij} - \bar{x}_j) + \beta_{2,bk}^{B}\bar{x}_j + \delta_{jbk} + \theta_{jbk}$

3. Cross NMR model adjust2 $\theta_{jbk} \sim \pi_j N(\delta_{jbk}, \tau^2) + (1 - \pi_j) N(\delta_{jbk} + \gamma_j, \tau^2 + \tau_\Gamma^2)$

$$\theta_{jbk} \sim \pi_j N(\delta_{jbk}, \tau^2) + (1 - \pi_j) N(\delta_{jbk} + \gamma_j, \tau^2 + \tau_\Gamma^2)$$



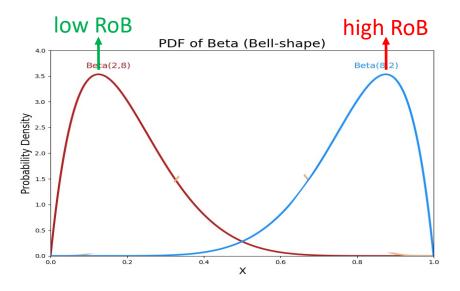
 θ_i

 δ_{j}

How do we find the weight of each peak, π_i ?

1. Give distributions

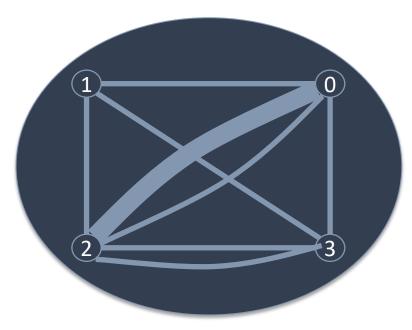
$$\pi_j \sim Beta(a,b)$$



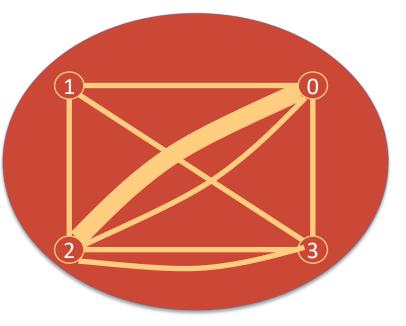
2. Use study characteristics'

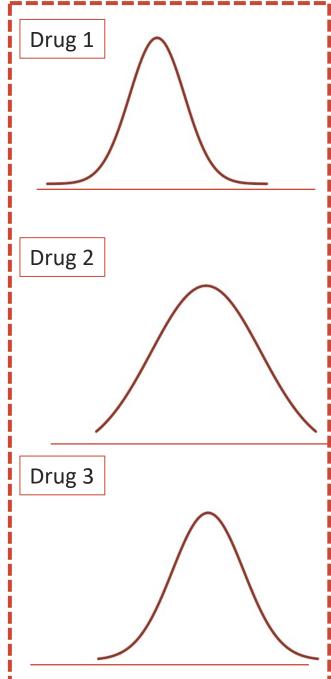
$$logit(\pi_i) = a + b * z$$

4. Cross NMR model prior

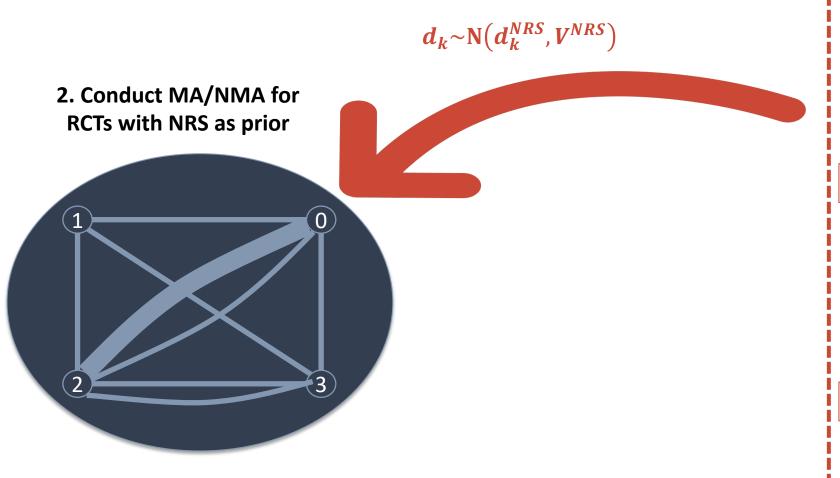


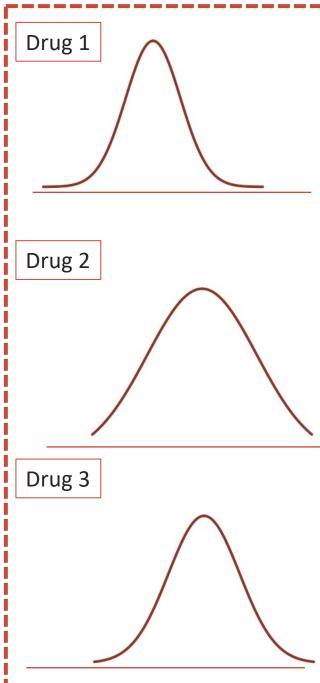
1. Conduct MA/NMA only with NRS



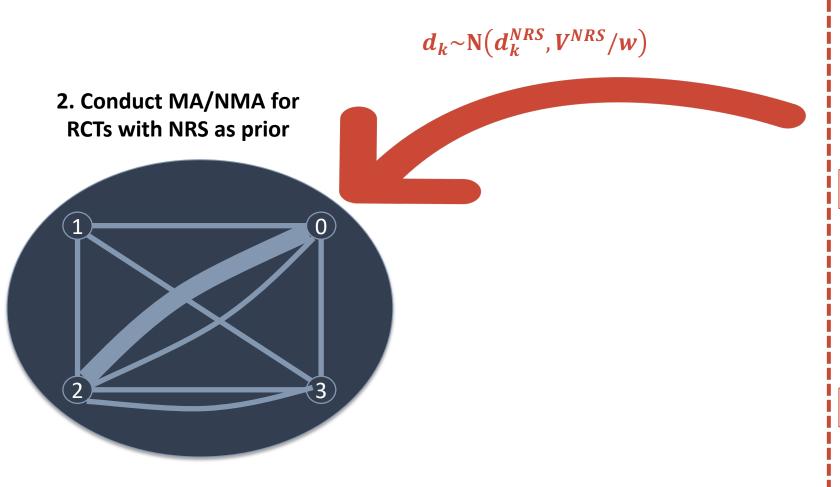


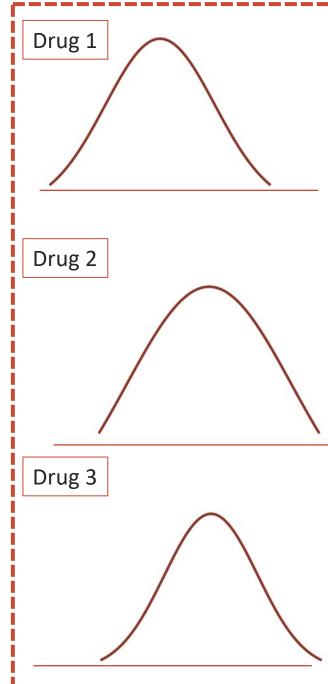
4. Cross NMR model prior Drug 1





4. Cross NMR model prior





crosnma library

crosnma to synthesize cross-design evidence and cross-format data using network meta-analysis

Tasnim Hamza and Georgia Salanti

2021-06-23

- 1 Introduction
- o 2 The synthesis models
- 2.1 Naive synthesis
- 2.2 Using non-randomized studies (NRS) as a prior
- 2.3 Bias-adjusted model 1
- o 2.4 Bias-adjusted model 2
- 2.5 Assumptions about the model parameters
- 3 Synthesis of studies comparing drugs for relapsing-remitting multiple sclerosis
 - 3.1 Description of the data
- 3.2 Analysis
 - 3.2.1 Naïve network meta-analysis
- 3.2.2 Naïve network meta-regression
- 3.2.3 Using non-randomized studies as a prior in network meta-regression
- 3.2.4 Bias-adjusted model 1
- 3.2.5 Bias-adjusted model 2
- References

library(crosnma)
library(rjags)
#> Loading required package: coda
#> Linked to JAGS 4.3.0
#> Loaded modules: basemod,bugs
load.module('mix')
#> module mix loaded

1 Introduction

UNIVERSITÄT BERN

Case study

Relapsing remitting multiple sclerosis (RRMS)

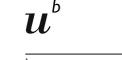
• Binary outcome: relapse in 2 years (0/1)

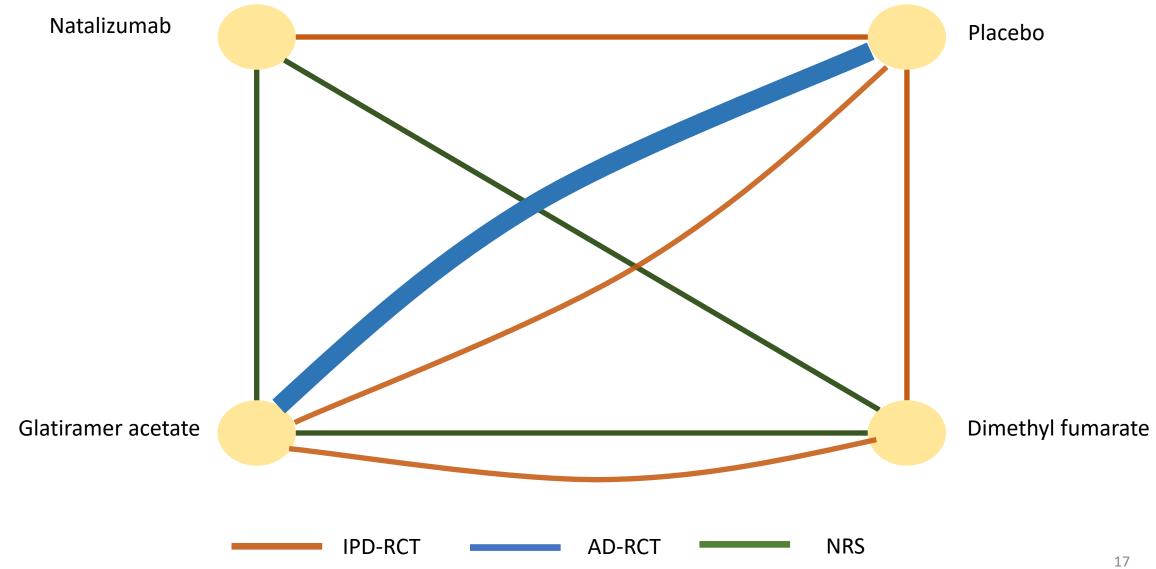
• Covariate: age

Study	Type of data	Treatment compared	Design/RoB	Sample size
DEFINE	IPD	Dimethyl fumarate Placebo	RCT/high risk	1234
CONFIRM	IPD	Dimethyl fumarate Glatiramer acetate Placebo	RCT/high risk	1417
AFFIRM	IPD	Natalizumab Placebo	RCT/low risk	939
Bornstein	AD	Glatiramer acetate Placebo	RCT/high risk	50
Johnson	AD	Glatiramer acetate Placebo	RCT/unclear risk	251
Swiss cohort	IPD	All/placebo	NRS/high risk	290

b UNIVERSITÄT BERN

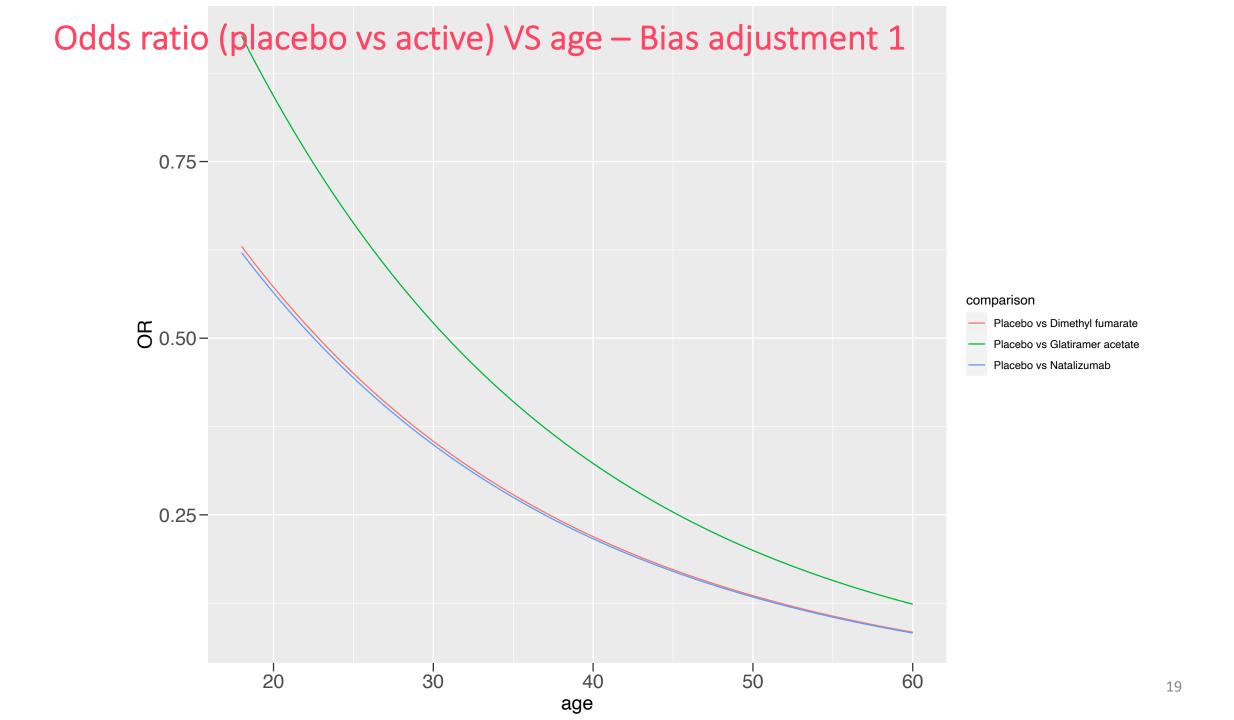
Network diagram





Results of RRMS analysis

Sources of evidence		Estimate [95% Crl]	b UNIVERSIT BERN
Placebo vs Natalizumab naive NMA adjust 1 NMA adjust 2 NMA		1.13 [0.86, 1.40] 1.13 [0.86, 1.40] 1.18 [0.90, 1.46]	
Placebo vs Glatiramer acetate naive NMA adjust 1 NMA adjust 2 NMA	——————————————————————————————————————	0.36 [0.13, 0.60] 0.38 [0.11, 0.65] 0.42 [0.17, 0.67]	
Placebo vs Dimethyl fumarate naive NMA adjust 1 NMA adjust 2 NMA		0.80 [0.62, 0.98] 0.81 [0.63, 0.98] 1.05 [0.62, 1.49]	
Glatiramer acetate vs Natalizumab naive NMA adjust 1 NMA adjust 2 NMA		0.76 [0.41, 1.11] 0.75 [0.38, 1.12] 0.77 [0.41, 1.12]	
Glatiramer acetate vs Dimethyl fumarate naive NMA adjust 1 NMA adjust 2 NMA		0.43 [0.20, 0.67] 0.42 [0.17, 0.68] 0.64 [0.24, 1.03]	
Dimethyl fumarate vs Natalizumab naive NMA adjust 1 NMA adjust 2 NMA		0.33 [0.02, 0.64] 0.33 [0.02, 0.63] 0.13 [-0.31, 0.57]	
Bias effect 1: -0.018 (-2.162, 0.798)	0.5 1 1.5		
Bias effect 2: -0.231 (-0.594, 0.140)	Observed Outcome		18



Summary

- Introduce 4 cross NMA/NMR framework approaches
- All models are implemented in a new R package: crosnma
- Apply the models on a network of drugs about RRMS
- We have to acknowledge the differences between RCT and NRS
- The models need to be investigated further in larger networks

References

- Saramago P, Sutton AJ, Cooper NJ, Manca A. Mixed treatment comparisons using aggregate and individual participant level data. Stat Med. 2012 Dec 10;31(28):3516-36. doi: 10.1002/sim.5442. Epub 2012 Jul 5. PMID: 22764016.
- Dias, Sofia, N. J. Welton, V. C. C. Marinho, G. Salanti, J.P.T Higgins, and A. E. Ades. 2010. "Estimation and Adjustment of Bias in Randomized Evidence by Using Mixed Treatment Comparison Meta-Analysis." Journal of the Royal Statistical Society 173: 613–29.
- Verde, Pablo Emilio. 2020. "A Bias-Corrected Meta-Analysis Model for Combining, Studies of Different Types and Quality." Biometrical Journal. Biometrische Zeitschrift, September. https://doi.org/10.1002/bimj.201900376.
- Efthimiou O, Mavridis D, Debray TP, Samara M, Belger M, Siontis GC, Leucht S, Salanti G; GetReal Work Package 4. Combining randomized and nonrandomized evidence in network meta-analysis. Stat Med. 2017 Apr 15;36(8):1210-1226. doi: 10.1002/sim.7223.