

Decision curve analysis for personalized treatment choice between multiple options

K. Chalkou, A. Manca, G. Salanti

ROYAL STATISTICAL SOCIETY DATA EVIDENCE DECISIONS

Background

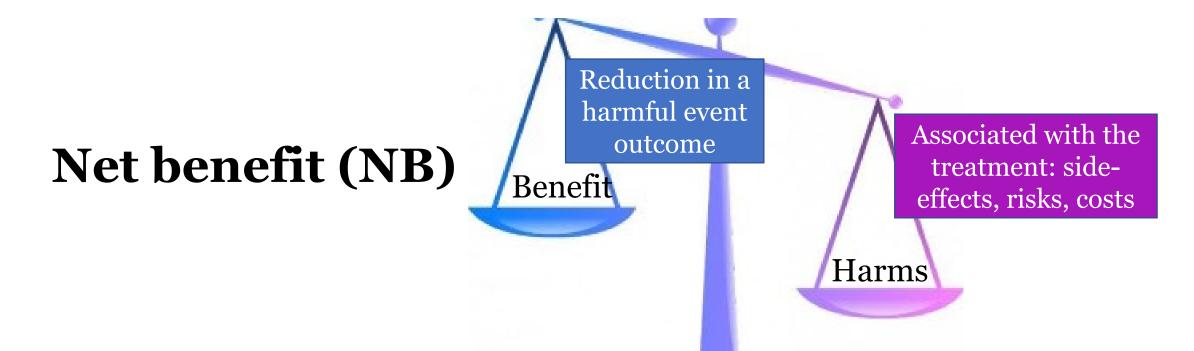
Several strategies to decide upon treatments

Default-average strategies:

Treat all patients with Treatment 1 Treat all patients with Treatment 2 Treat nobody

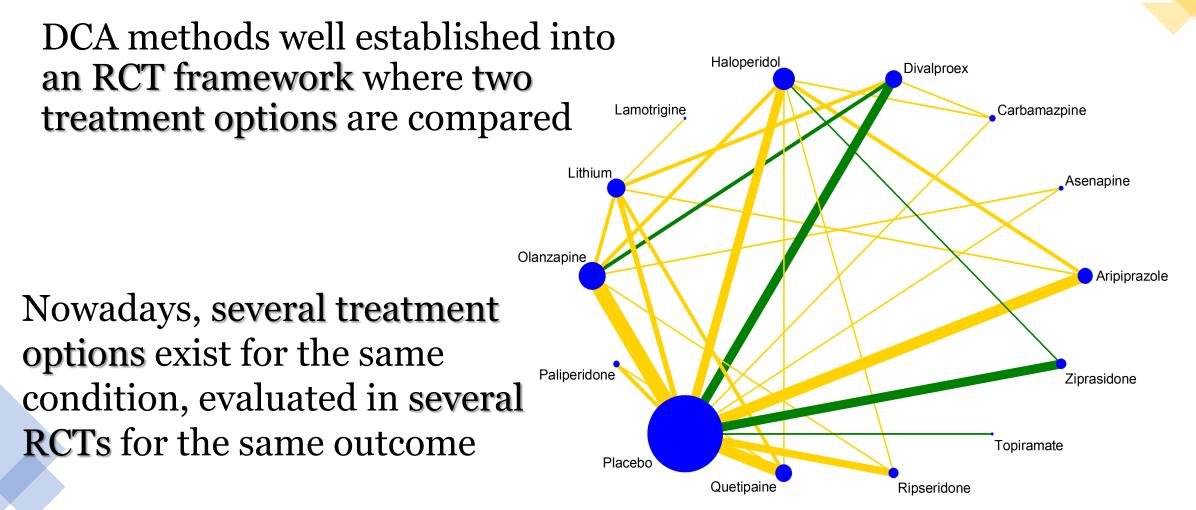
Individualized treatment choices:

Treat patients according to an **individualized** prediction model Several prediction models available



Decision curve analysis methods (DCA)

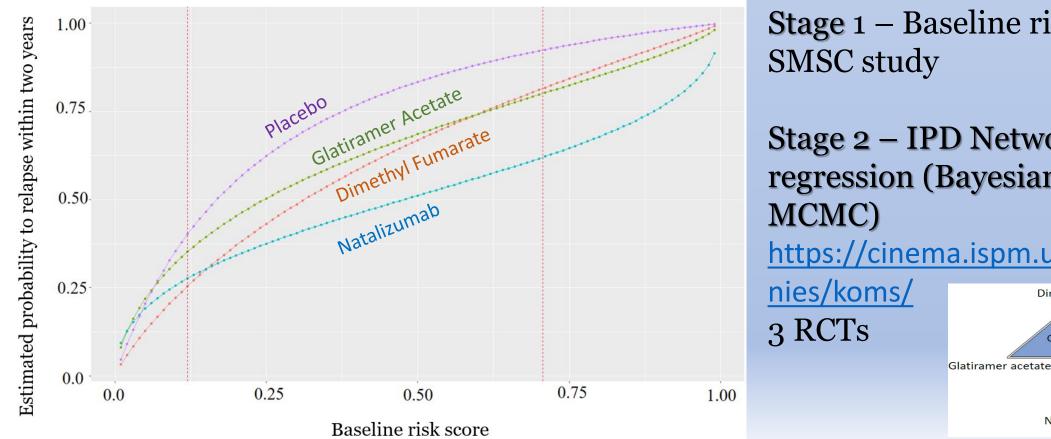
- The main methodological vehicle **to evaluate the clinical relevance** of each strategy
- Evaluate which strategy leads to better clinical decisions


Measure of performance in DCA – Net Benefit

The NB can be estimated for each strategy *s*: *NB*_s The strategy with <u>the highest NB</u> leads to <u>better clinical decisions</u>

Background

Objectives



We aim to extend the DCA methodology, into a **network meta-analysis framework (NMA)**, where several treatment options are compared coming from several studies, to compare default average strategies with individualized strategies

Case study

Individualized treatment recommendation for patients with relapsing-remitting multiple sclerosis (RRMS)

Stage 1 – Baseline risk score

Stage 2 – IPD Network Metaregression (Bayesian using https://cinema.ispm.unibe.ch/shi **Dimethyl fumarate**

CONFIRM

Natalizumab

Placebo

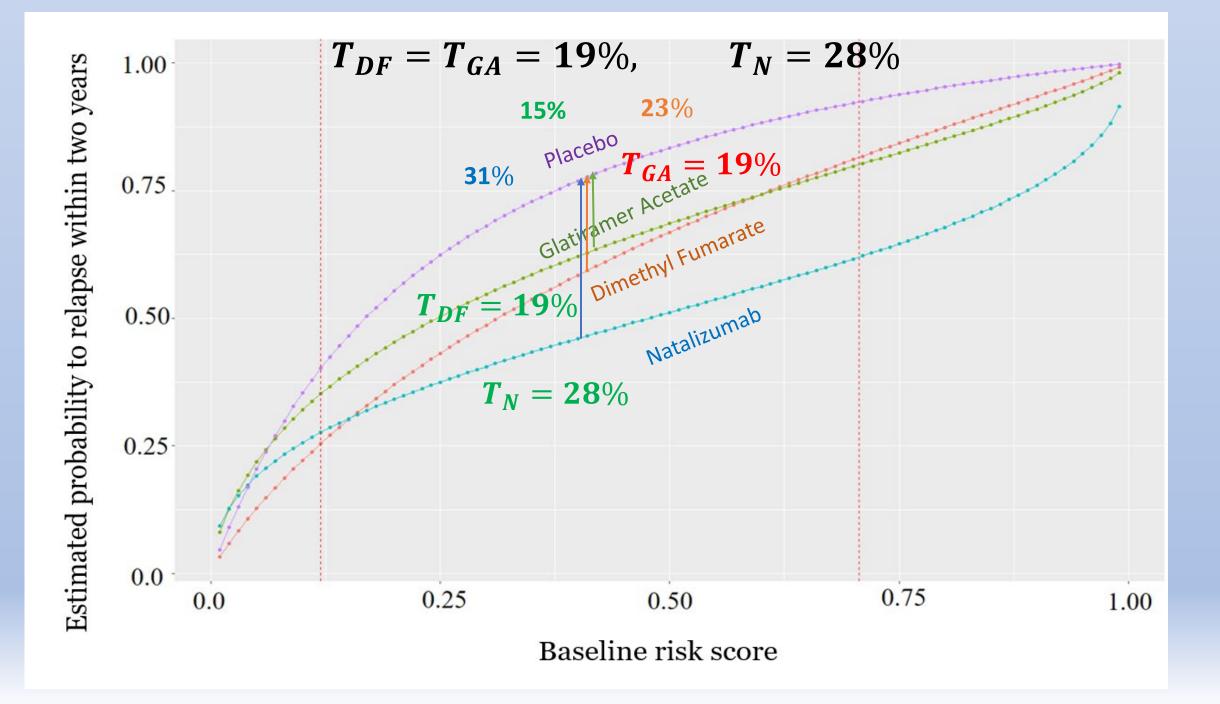
Reaching treatment recommendations when we have multiple options via a model

Threshold value T_j

Even if a treatment *j* is **efficient** treatment's **side-effects**, **inconvenience and risks** need to be taken under consideration

$$RD_{i,N} = 3\%$$
 (2) $RD_{i,N} = 35\%$ (2)

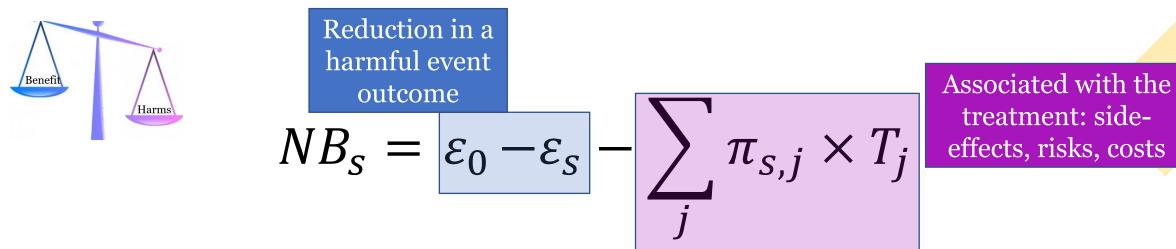
"Which is the minimum risk difference compared to control that renders treatment j worthwhile taking?"


For instance, a T_j of 20% means that we would be willing to treat no more than 5 patients to prevent one relapse

Reaching treatment recommendations when we have multiple options via a model

Let us assume: $T_{DF} = T_{GA} = 19\%$, $T_N = 28\%$

Decision rule


For a patient *i*, the recommended treatment *j* under the prediction model is the one that satisfies $max \{RD_{i,j} - T_j\}$, between those treatments with $RD_{i,j} \ge T_j$. When all active treatments lead to $RD_{i,j} < T_j$, then the control treatment is recommended for patient *i*

Reaching treatment recommendations when we have multiple options via a model

Treatment	Placebo	Glatiramer	Dimethyl	Natalizumab
		Acetate	Fumarate	
Predicted risk to relapse	75%	60%	52%	43%
within two years (R _{<i>i</i>,<i>j</i>})				
Predicted risk difference vs	-	15%	23%	31%
placebo (<i>RD_{i,j}</i>)				
Threshold value for treatment		19%	19%	28%
j (<i>T_j</i>)				
$RD_{i,j} - T_j$		-4%	4%	3%
Recommended treatment via				
the prediction model		Dimethyl Fumarate		

Measure of performance in DCA – Net Benefit

 ε_0 denotes the event rate under no treatment,

 ε_s the event rate under strategy *s*, and

 $\pi_{s,j}$ the proportion of patients treated with treatment *j* under strategy *s*

 T_i the threshold values chosen for treatment j

Measure of performance in DCA – Net Benefit

Estimation of ε_0 , **depends on the framework**

A) One RCT available

<u>Observed proportion of events</u> in the placebo arm, $\hat{\varepsilon}_0 = e_0^{Data}$, where *Data* the available dataset

B) Several RCTs

Pooled event rate estimation, via a meta-analysis of all placebo events, in the dataset of all available RCTs *Data* Patients randomized within trials but not across them $NB_s = \varepsilon_0 - \varepsilon_s - \sum \pi_{s,j} \times T_j$

Measure of performance in DCA – Net Benefit Estimation of $\pi_{s,j}$

We need the **congruent dataset** for strategy s, $Data_s$ – the subset of *Data* including those patients where: recommended treatment = actual given treatment

Using $Data_s$, we estimate all $\pi_{s,j}$ as the observed proportion of people under each treatment j, $\hat{\pi}_{s,j} = p_{s,j}^{Data_s}$

$$NB_s = \boldsymbol{\varepsilon_0} - \boldsymbol{\varepsilon_s} - \sum_j \boldsymbol{\pi_{s,j}} \times T_j$$

Measure of performance in DCA – Net Benefit **Estimation of** ε_s

The weighted average event rate under strategy *s*:

$$\hat{\varepsilon}_{s} = \sum_{j=0}^{J} p_{s,j}^{Data_{s}} \times \hat{\varepsilon}_{s,j}$$

 $p_{s,j}^{Data_s}$ is the observed proportion of patients treated with treatment *j* in the congruent dataset, $Data_s$

 $\hat{\varepsilon}_{s,j}$, is the event rate under treatment *j* using strategy *s*

$$NB_{s} = \boldsymbol{\varepsilon}_{0} - \boldsymbol{\varepsilon}_{s} - \sum_{j} \boldsymbol{\pi}_{s,j} \times T_{j}$$

Measure of performance in DCA – Net Benefit Estimation of ε_s , depends on the framework

1. One RCT

 $\hat{\varepsilon}_{s,j} = e_j^{Data_s}$ i.e., $\varepsilon_{s,j}$ the observed proportion of events under arm *j* in $Data_s$

2. Several RCTs

<u>Step 1:</u> Pooled placebo event rate $\hat{\varepsilon}_{s,0}$

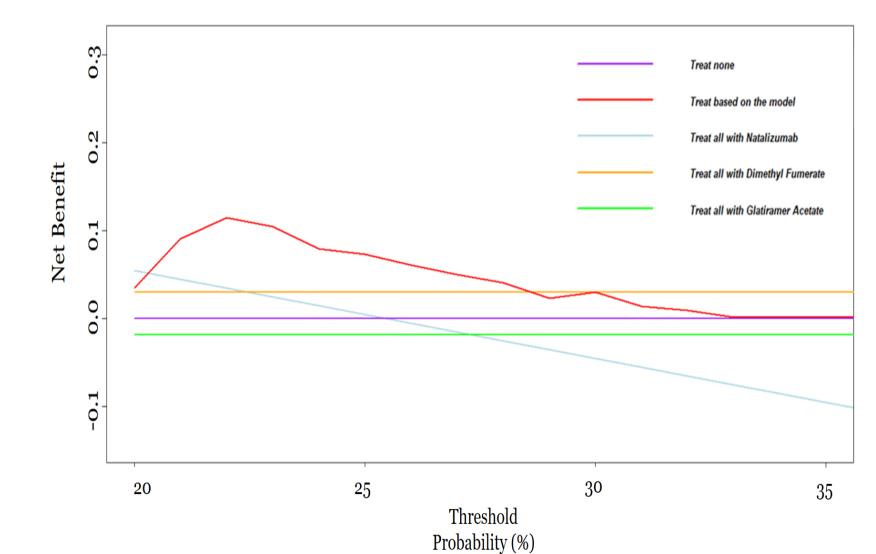
<u>Step 2</u>: Risk ratio of each treatment versus the control $RR_i^{Data_s}$

<u>Step 3</u>: The treatment-specific event rates are $\hat{\varepsilon}_{s,j} = \hat{\varepsilon}_{s,0} \times RR_j^{Data_s}$

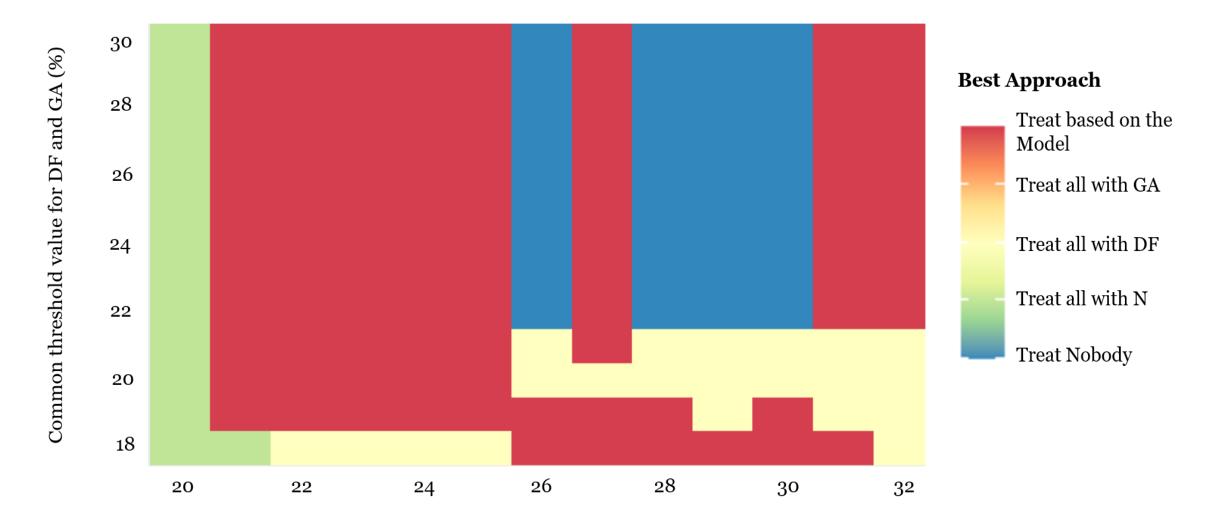
$$\hat{\varepsilon}_{s} = \sum_{j=0}^{J} p_{s,j}^{Data_{s}} \times \hat{\boldsymbol{\varepsilon}}_{s,j}$$

$$NB_s = \boldsymbol{\varepsilon_0} - \boldsymbol{\varepsilon_s} - \sum_j \boldsymbol{\pi_{s,j}} \times T_j$$

Exemplifying the methodology deciding for treatment in patients with RRMS


Approach T	$T_{DF}=T_{GA}=19\%$,	$T_N = 28\%$	Net Benefit
Treat nobody			0.000
Treat all patients with Natalizuma	ab		0.025
Treat all patients with Dimethyl F	umarate		0.030
Treat all patients with Glatiramer	Acetate		0.019
Treat patients according to the pr	rediction model		0.050
	-		ver patients that will relapse per 10 ared to strategy "treat all patients w

The strategy "treat patients according to the prediction model" leads to 5 fewer patients that will relapse per 100 participants compared to "treat nobody" strategy, and 2 fewer patients compared to strategy "treat all patients with Dimethyl Fumarate"


Exemplifying the methodology deciding for treatment in patients with RRMS

Different patients might weight differently the risk to relapse and the risks associated with each treatment

$$T_{DF} = T_{GA} = 19\%,$$

 $T_N = 20 - 35\%$

Exemplifying the methodology deciding for treatment in patients with RRMS

Threshold value for Natalizumab (%)

Conclusions

- We extended the DCA methodology, a vehicle for evaluating which strategy leads to better clinical treatment decisions *into a NMA framework*
- ➤The methodology can be applied to compare any group-level strategy with individualized-level strategies, when IPD RCTs are available
- ➤The methodology can be applied to compare the clinical relevance of several personalized prediction models to identify which one leads to better clinical treatment decisions
- The individualized prediction model for deciding upon treatments for patients with relapsing-remitting multiple sclerosis seems to lead to better clinical treatment decisions into a wide range of threshold values compare to default strategies

References

- ➢ Vickers AJ, Elkin EB. Decision Curve Analysis: A Novel Method for Evaluating Prediction Models. *Med Decis Making*. 2006;26(6):565-574. doi:10.1177/0272989X06295361
- Chalkou K, Steyerberg E, Egger M, Manca A, Pellegrini F, Salanti G. A two-stage prediction model for heterogeneous effects of many treatment options: application to drugs for Multiple Sclerosis. *Stat Med* 2021 Sep 10;40(20):4362-4375.
- Chalkou K, Steyerberg E, Bossuyt P, Subramanian S, Benkert P, Kuhle J, Disanto G, Kappos L, Egger M. Development, validation and clinical usefulness of a prognostic model for relapse in relapsing-remitting multiple sclerosis. <u>arXiv:2105.06941v1</u> [stat.AP]. https://arxiv.org/abs/2105.06941

Thank you for your attention!

DATA EVIDENCE DECISIONS

