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Flowchart of IPD-AD-RCT-NRS NMA

Records identified through PubMed
database searching
(n= 1421)

Additional records identified through
other sources (Twitter)
(n=1)
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’ Titles screened
(n=1422)

R Records excluded (titles clearly suggest an application) ‘
(n=1362 )

’ Abstracts assessed for eligibility
(n=60)

Records excluded, not methodological papers ‘
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’ Full-text articles assessed for eligibility

Studies excluded for irrelevant methodology
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‘ (n=18)

Eligibility

(n=32)

Articles discuss methods to combine IPD and AD
(n=25)
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Studies in the MA Studies in the NMA
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Articles discuss methods to combine RCT and NRS
(n=7)

| |

Studies in the NMA Studies in the MA

review review review review
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Studies included in the NMA Studies included in the NMA
review review 3
(n=6) (n=15)

Models to combine IPD and AD NMR

1. Three-level hierarchical NMR
model (3LH-NMR) (Saramago
2012, Leahy 2012, Donegan
2012)

2. Multilevel network meta-
regression (ML-NMR) (Leahy
2012, Phillippo 2020)

3. Matching-adjusted indirect
comparisons (MAIC)
(Signorovitch 2010)

4. Simulated treatment
comparisons (STC) (Caro
2010}

Models to combine RCT and NRS NMR

1. Naive approach

2. Using NRS as an informative
prior

3. Design-adjusted model

4. Multilevel hierarchical model

Dias 2010, Schmitz 2013,
Cameron 2015 and Efthimiou
2017, Verde 2020
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Models to combine IPD and AD NMR Models to combine RCT and NRS NMR

1. Three-level hierarchical NMR 1. Naive approach

model (3LH-NMR) (Saramago > Usine NRS e _
. t
2012, Leahy 2012, Donegan prs|lc?rg as an informative

2012)
3. Design-adjusted model

Problems in R several study designs and several
Implementation studies within each design

- simple indirect comparison
- MAIC perform poorly in simulations

IPD-AD network meta-regression: 3LH-NMR

1. IPD studies 2. AD studies
For i individual in j study with k treatment For j study with k treatment
yijk~Bernoulli(pijk) Y. jk~Binomial(p ji)
logit(p;jx) = logit (pjx) =
U + Paxijr + Box (Xijr — X jk) wi+B2 k% jk + Gjpk

+ ﬁgkx.jk + Gjpk

3. Exchangeable effects:
8ipk~N(dy — dp, %), Bz ~ N(Bg;- By, 0) and B, ~ N(BY- By, ayyy)
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1. IPD studies
For RCT and NRS

yijk~Bern0ulli(pl-jk)
logit(pl- jk) =
U + Bixiji + Bare (Xijk — X ji)
+ BrrX jk + Sjpk

3. Exchangeable effects:

2. AD studies

For RCT and NRS

Y. jk~Binomial(p ji)
logit (p_jk ) =
u;j + ﬁgkx.jk + Gjpk

Sipie~N(dy — dp,7%), B ~ N(By- By, 05) and B3 ~ N(By'- By, o)

Generic NMR model

Generic NMR model

This assumes NRS and RCTs of
high risk bias contributes the
same (according to their

precision) with low risk of bias
RCTs

We introduce R;
which reflects the
risk of bias in study j
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Generic NMR model

1. IPD studies 2. AD studies
For RCT and NRS For RCT and NRS
yijk~Bern0ulli(pijk) _ _
logit(pijk) — y jk~Binomial(p jx)
w + BrXiji + B (Xijie — % jxc) + loggc (i) =
BoxX jk + Gjpk TV R; Wi+x jxPar + Ojpr +Vj R;

3. Exchangeable effects:

Sjpie~N(dy — dp, T)Bx ~ N(Bi- By, 05) and B ~ N(B- By, oiy),

4. Bias assumptions 1,4, ~beta(1,20)

vj~N(g.05), Ri~Bern(m;) R; = {nunclear~beta(1,1)
Thign~beta(20,1)

9
Generic NMR model —
Informative Priol
1. IPD —-NMR 2. AD —-NMR
For RCT For RCT
yijk~Bern0ulli(pijk) Y. jk~Binomial(p ji)
logit(pyjx ) = logit (p,jx) =
u; + Pixiji + Box (Xijr — X ji) Wi+x jiBak + Ojpk

+ B2 i jik + Sjpie

3. Exchangeable effects:

8jpic~N (dyc — dy, T2)BE, ~ N(BE- BE, 0B) and B¥% ~ N(BY-BY, o) ﬁ
NRS NRS

4. Priors d v are dat

u;, BY, BE~N(0,10%), 7, o, oy~ Unif(0, 10)|dk~N ! GRS YAES ) I

10
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b
Case study u
* Relapsing remitting multiple sclerosis (RRMS) s
* Binary outcome: relapse in 2 years (0/1)
* Covariate = age (reference to the mean age 37 yrs) — between and within—study
interaction are the same
Study Type of data Design/RoB Probability of risk Treatment compared Sample size
DEFINE IPD RCT/high risk Beta(3,1) Dimethyl fumarate 1234
Placebo
CONFIRM IPD RCT/high risk Beta(3,1) Dimethyl fumarate 1417
Glatiramer acetate
Placebo
AFFIRM IPD RCT/low risk Beta(1,20) Natalizumab 939
Placebo
Bornstein AD RCT/high risk Beta(3,1) Glatiramer acetate 50
Placebo
Johnson AD RCT/unclear risk Beta(1,1) Glatiramer acetate 251
Placebo
Swiss cohort IPD NRS/high risk Beta(30,1) All 290
11
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Network diagram u
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Results (response active vs placebo for 37 yrs) b
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Results (OR vs age in design-adjusted model) u
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Summary

* Introduce 3 generic framework approaches
* Adding the observational evidence increase the precision
* We have to acknowledge the differences between RCT and NRS

Further development

* Extend ML-NMR with design-adjustment

* Include single-arm trials

* Implement the model in larger network

* Sensitivity analysis especially for bias parameters
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