Flexible generic framework for evidence synthesis in health technology assessment

Presented by: Tasnim Hamza, Institute of Social and Preventive Medicine (ISPM), University of Bern

Goal

Randomised Controlled Trials (RCT) Non-Randomised Studies (NRS)

Individual Participant Data (IPD) Aggregated Data (AD)
Flowchart of IPD-AD-RCT-NRS NMA

1. Records identified through PubMed database searching ($n = 1421$)
 - Titles screened ($n = 1422$)
 - Abstracts assessed for eligibility ($n = 66$)
 - Full-text articles assessed for eligibility ($n = 32$)
 - Articles discuss methods to combine IPD and AD ($n = 25$)

2. Additional records identified through other sources (Twitter) ($n = 1$)
 - Records excluded (titles clearly suggest an application) ($n = 1362$)
 - Records excluded, not methodological papers ($n = 30$)
 - Studies excluded for irrelevant methodology ($n = 18$)

3. Articles discuss methods to combine RCT and NRS ($n = 7$)
 - Studies in the NMA review ($n = 6$)
 - Studies in the MA review ($n = 1$)
 - Studies included in the NMA review ($n = 6$)
 - Studies included in the NMA review ($n = 5$)

Models to combine IPD and AD NMR

1. Three-level hierarchical NMR model (3LH-NMR) ([Saramago 2012, Leahy 2012, Donegan 2012](#))
2. Multilevel network meta-regression (ML-NMR) ([Leahy 2012, Phillippo 2020](#))
3. Matching-adjusted indirect comparisons (MAIC) ([Signorovitch 2010](#))
4. Simulated treatment comparisons (STC) ([Caro 2010](#))

Models to combine RCT and NRS NMR

1. Naïve approach
2. Using NRS as an informative prior
3. Design-adjusted model
Models to combine IPD and AD NMR

1. **Three-level hierarchical NMR model (3LH-NMR)** (Saramago 2012, Leahy 2012, Donegan 2012)
2. **Multilevel network meta-regression (ML-NMR)** (Leahy 2012, Phillippo 2020)
3. **Matching-adjusted indirect comparisons (MAIC)**
 - simple indirect comparison
 - MAIC perform poorly in simulations
4. **Simulated treatment comparisons (STC)** (Caro 2010)

Models to combine RCT and NRS NMR

1. **Naïve approach**
2. **Using NRS as an informative prior**
3. **Design-adjusted model**
 - several study designs and several studies within each design

IPD-AD network meta-regression: 3LH-NMR

1. IPD studies
For i individual in j study with k treatment

\[
y_{ijk} \sim Bernoulli (p_{ijk})
\]

\[
\text{logit} (p_{ijk}) =
\]

\[
u_j + \beta_1 x_{ijk} + \beta_{2,k} (x_{ijk} - x_{jk}) + \beta_{2,k} x_{jk} + \delta_{jbk}
\]

2. AD studies
For j study with k treatment

\[
y_{jk} \sim Binomial (p_{jk})
\]

\[
\text{logit} (p_{jk}) =
\]

\[
u_j + \beta_{2,k} x_{jk} + \delta_{jbk}
\]

3. Exchangeable effects:

\[
\delta_{jbk} \sim N(d_k - d_b, \tau^2), \beta_{2,k}^B \sim N(B_k^B - B_b^B, \sigma_B^2) \text{ and } \beta_{2,k}^W \sim N(B_k^W - B_b^W, \sigma_W^2)
\]
1. IPD studies
For RCT and NRS

\[y_{ijk} \sim \text{Bernoulli}(p_{ijk}) \]
\[\text{logit}(p_{ijk}) = u_j + \beta_1 x_{ijk} + \beta_{2,k}(x_{ijk} - x_{jk}) + \beta_{2,k}x_{jk} + \delta_{jbk} \]

2. AD studies
For RCT and NRS

\[y_{jk} \sim \text{Binomial}(p_{jk}) \]
\[\text{logit}(p_{jk}) = u_j + \beta_{2,k}x_{jk} + \delta_{jbk} \]

3. Exchangeable effects:
\[\delta_{jbk} \sim N(d_k - d_b, \tau^2), \beta_{2,k}^B \sim N(B_k^B - B_b^B, \sigma_B^2) \] and \[\beta_{2,k}^W \sim N(B_k^W - B_b^W, \sigma_W^2) \]

We introduce \(R_j \) which reflects the risk of bias in study \(j \)

This assumes NRS and RCTs of high risk bias contributes the same (according to their precision) with low risk of bias RCTs.
1. IPD studies
For RCT and NRS
\[y_{ijk} \sim \text{Bernoulli}(p_{ijk}) \]
\[
\logit(p_{ijk}) = u_j + \beta_1 x_{ijk} + \beta_{2,k}(x_{ijk} - x_{jk}) + \beta_{2,k} x_{j,k} + \delta_{jbk} + \gamma_j R_j
\]

2. AD studies
For RCT and NRS
\[y_{jk} \sim \text{Binomial}(p_{jk}) \]
\[
\logit(p_{jk}) = u_j + x_{jk} \beta_{2,k} + \delta_{jbk} + \gamma_j R_j
\]

3. Exchangeable effects:
\[\delta_{jbk} \sim N(d_k - d_b, \tau^2) \beta_{2,k}^B \sim N(B_{k}^B - B_{b}^B, \sigma_B^2) \text{ and } \beta_{2,k}^W \sim N(B_{k}^W - B_{b}^W, \sigma_W^2) \]

4. Bias assumptions
\[\gamma_j \sim N(g, \sigma_g^2), R_j \sim \text{Bern}(\pi_j) \]
\[R_j = \begin{cases}
\pi_{\text{low}} \sim \text{beta}(1,20) \\
\pi_{\text{unclear}} \sim \text{beta}(1,1) \\
\pi_{\text{high}} \sim \text{beta}(20,1)
\end{cases} \]

1. IPD –NMR
For RCT
\[y_{ijk} \sim \text{Bernoulli}(p_{ijk}) \]
\[
\logit(p_{ijk}) = u_j + \beta_1 x_{ijk} + \beta_{2,k}(x_{ijk} - x_{jk}) + \beta_{2,k} x_{j,k} + \delta_{jbk}
\]

2. AD –NMR
For RCT
\[y_{jk} \sim \text{Binomial}(p_{jk}) \]
\[
\logit(p_{jk}) = u_j + x_{jk} \beta_{2,k} + \delta_{jbk}
\]

3. Exchangeable effects:
\[\delta_{jbk} \sim N(d_k - d_b, \tau^2) \beta_{2,k}^B \sim N(B_{k}^B - B_{b}^B, \sigma_B^2) \text{ and } \beta_{2,k}^W \sim N(B_{k}^W - B_{b}^W, \sigma_W^2) \]

4. Priors
\[u_j, B_{k}^W, B_{k}^B \sim N(0, 10^4), \tau, \sigma_B, \sigma_W \sim \text{Unif}(0,10) \]
\[d_k \sim N(d_k^{\text{NRS}}, V_{\text{NRS}}) \]
Case study

- Relapsing remitting multiple sclerosis (RRMS)
- Binary outcome: relapse in 2 years (0/1)
- Covariate = age (reference to the mean age 37 yrs) – between and within–study interaction are the same

<table>
<thead>
<tr>
<th>Study</th>
<th>Type of data</th>
<th>Design/RoB</th>
<th>Probability of risk</th>
<th>Treatment compared</th>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFINE</td>
<td>IPD</td>
<td>RCT/high risk</td>
<td>Beta(3,1)</td>
<td>Dimethyl fumarate Placebo</td>
<td>1234</td>
</tr>
<tr>
<td>CONFIRM</td>
<td>IPD</td>
<td>RCT/high risk</td>
<td>Beta(3,1)</td>
<td>Dimethyl fumarate Glatiramer acetate Placebo</td>
<td>1417</td>
</tr>
<tr>
<td>AFFIRM</td>
<td>IPD</td>
<td>RCT/low risk</td>
<td>Beta(1,20)</td>
<td>Natalizumab Placebo</td>
<td>939</td>
</tr>
<tr>
<td>Bornstein</td>
<td>AD</td>
<td>RCT/high risk</td>
<td>Beta(3,1)</td>
<td>Glatiramer acetate Placebo</td>
<td>50</td>
</tr>
<tr>
<td>Johnson</td>
<td>AD</td>
<td>RCT/unclear risk</td>
<td>Beta(1,1)</td>
<td>Glatiramer acetate Placebo</td>
<td>251</td>
</tr>
<tr>
<td>Swiss cohort</td>
<td>IPD</td>
<td>NRS/high risk</td>
<td>Beta(30,1)</td>
<td>All</td>
<td>290</td>
</tr>
</tbody>
</table>

Network diagram

- Natalizumab
- Placebo
- Glatiramer acetate
- Dimethyl fumarate

- IPD-RCT
- AD-RCT
- NRS
Results (response active vs placebo for 37 yrs)

- CrI of γ (bias parameter):
 - 0.2
 - 1.1
 - 2.7

Results (OR vs age in design-adjusted model)
Summary

- Introduce 3 generic framework approaches
- Adding the observational evidence increase the precision
- We have to acknowledge the differences between RCT and NRS

Further development

- Extend ML-NMR with design-adjustment
- Include single-arm trials
- Implement the model in larger network
- Sensitivity analysis especially for bias parameters