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Cross NMR model prior
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2. Conduct MA/NMA for
RCTs with NRS as prior
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Case study
* Relapsing remitting multiple sclerosis (RRMS)
* Binary outcome: relapse in 2 years (0/1)
* Covariate: age

Study Type of data Treatment Design/RoB Probability of risk Sample size
compared
DEFINE 1PD Dimethyl fumarate RCT/high risk Beta(3,1) 1234
Placebo
CONFIRM 1PD Dimethyl fumarate RCT/high risk Beta(3,1) 1417
Glatiramer acetate
Placebo
AFFIRM 1PD Natalizumab, RCT/low risk Beta(1,20) 939
Placebo
Bornstein AD Glatiramer acetate RCT/high risk Beta(3,1) 50
Placebo
Johnson AD Glatiramer acetate RCT/unclear risk Beta(1,1) 251
Placebo
Swiss cohort 1PD All/placebo NRS/high risk Beta(30,1) 290
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Results of RRMS analysis (active vs placebo)
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For questions/comments, please contact me at
tasnim.hamza@ispm.unibe.ch
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