Flexible generic framework for evidence synthesis in health technology assessment using network meta-analysis

 $u^{\scriptscriptstyle b}$

UNIVER BERN

Presented by: Tasnim Hamza

Authors: Tasnim Hamza , Fabio Pellegrini, Jens Kuhle, Pascal Benkert, Suvitha Subramaniam, Sabine Schaedelin, Cynthia Igleiais, Andrea Manca, Konstantina Chalkou, Georgia Salanti 42nd Annual Conference of the International Society for Clinical Biostatistics (ISCB) 18-22 July 2021

1

6

 ses study Relapsing remitting multiple sclerosis (RRMS) Binary outcome: relapse in 2 years (0/1) Covariate: age 					u°
Study	Type of data	Treatment compared	Design/RoB	Probability of risk	Sample size
DEFINE	IPD	Dimethyl fumarate Placebo	RCT/high risk	Beta(3,1)	1234
CONFIRM	IPD	Dimethyl fumarate Glatiramer acetate Placebo	RCT/high risk	Beta(3,1)	1417
AFFIRM	IPD	Natalizumab Placebo	RCT/low risk	Beta(1,20)	939
Bornstein	AD	Glatiramer acetate Placebo	RCT/high risk	Beta(3,1)	50
Johnson	AD	Glatiramer acetate Placebo	RCT/unclear risk	Beta(1,1)	251
Swiss cohort	IPD	All/placebo	NRS/high risk	Beta(30,1)	290

 $u^{\scriptscriptstyle b}$

Summary

- Introduce 4 cross NMA/NMR framework approaches
- All models are implemented in a new R package: crossnma
- Apply the models on a network of drugs about RRMS
- We have to acknowledge the differences between RCT and NRS
- The models need to be investigated further in larger network

References

- Dias, Sofia, N. J. Welton, V. C. C. Marinho, G. Salanti, J.P.T Higgins, and A. E. Ades. 2010. "Estimation and Adjustment of Bias in Randomized Evidence by Using Mixed Treatment Comparison Meta-Analysis." *Journal of the Royal Statistical Society* 173: 613–29.
- Verde, Pablo Emilio. 2020. "A Bias-Corrected Meta-Analysis Model for Combining, Studies of Different Types and Quality." *Biometrical Journal. Biometrische Zeitschrift*, September. <u>https://doi.org/10.1002/bimj.201900376.</u>
- Efthimiou O, Mavridis D, Debray TP, Samara M, Belger M, Siontis GC, Leucht S, Salanti G; GetReal Work Package 4. Combining randomized and non-randomized evidence in network meta-analysis. Stat Med. 2017 Apr 15;36(8):1210-1226. doi: 10.1002/sim.7223.

