Bayesian dose-response network meta-analysis

Authors: Tasnim Hamza and Georgia Salanti
Presented by: Tasnim Hamza, PhD candidate, Institute of Social and Preventive Medicine (ISPM)

Outline

1. Dose-response model within a study
2. Dose-response pairwise meta-analysis
3. Dose-response network meta-analysis (NMA)

Methods – standard NMA model

Steps 1-3
1. In a study with dose x treatment k:
 - Restricted cubic spline
 - Network meta-regression
 - Study year

Steps 4-5
4. Consistency equation
 \(d_{jk} = d_{jk} - d_{kj} \)
5. Priors
 \(u \sim N(0, 10^{-5}) \)
 \(d_{jk} \sim N(0, 10^{-5}) \)
 \(\tau \sim Unif(0, 10) \)
2.1. In a study

Dataset

Methods

Methods – dose-response NMA model

Methods – dose-response NMA model with class effect

Methods – dose-response NMA model with covariate

Dataset – antidepressants

Dataset – antidepressants (colored by class)

Dataset – splitted network
Results – dose-response NMR with class effect (M5)

Dataset – antidepressants (colored by class)

Results – comparison between the 5 models

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ</td>
<td>0.201</td>
<td>0.190</td>
<td>0.163</td>
<td>0.184</td>
<td>0.202</td>
</tr>
<tr>
<td>DIC</td>
<td>1313</td>
<td>1301</td>
<td>1191</td>
<td>1280</td>
<td>1299</td>
</tr>
</tbody>
</table>

* τ – common heterogeneity **DIC - Deviance Information Criterion

- M1: dose-response NMA
- M2: dose-response NMR with RoB
- M3: dose-response NMR with study-year
- M4: dose-response NMR with variance
- M5: dose-response NMA with class effect
Limitations in the approach

- **Bayesian framework**
 - Sensitivity to prior choice; sensitivity analysis
 - Time consuming
 - Ensure convergence
- **Dose-response models**
 - Categorization of the exposure
 - The dose-response shape
- **Dose-response NMA model**
 - Doses should be harmonized in class effect model