HTx - 2nd General Assembly

Bern, 6-7 February

A two-stage prediction model for heterogeneous effects of many treatment options: application to drugs for Multiple Sclerosis

Konstantina Chalkou, Georgia Salanti Institute of Social and Preventive Medicine, University of Bern, Switzerland

Motivation: Effectiveness of drugs in Relapsing-Remitting Multiple Sclerosis (MS)

- Several drugs, compared in Network Meta-Analyses (NMA)#not personalized predictions
- > We focus on *Dimethyl Fumarate*, *Glatiramer Acetate*, and *Natalizumab*
- > Outcome: *Relapse MS in 2 years* (Yes/No) for patients diagnosed with relapsing-remitting MS
- > We want to find the drug that minimizes the risk of relapse, subject to patient characteristics
 - Previous evidence suggests that patients at different age groups and at different stages of the disease might respond differently to the same treatment → Heterogeneous
 Treatment Effects

Question:

Which treatment is the best for a specific patient?

- Individual characteristics influence the variation of HTE
 - ➤ Baseline risk score prior to treatment of patients seems to be a determinant predictor for HTE, Prognosis research is a key-tool for estimating risk scores
- 2. Numerous treatment options available for each disease

 Network meta-analysis (NMA) is a key-tool for comparing many
 different treatment options [2]

Aim

To develop a *two-stage* evidence synthesis *prediction model* to predict the most likely outcome under several possible treatment options while accounting for patients' characteristics using *individual participant data network meta-regression* with *risk scores*

DATA

- ☐ 3 randomized clinical trials (phase III), 2990 observations in total
- ☐ Disease: Relapsing-remitting Multiple Sclerosis (MS)
- Outcome: Relapse MS in 2 years

Treatments

Risk score

Prognostic Factors

Effect modifiers

HTE

Prediction model using IPD Network meta-regression with PF and EM

Prediction model with IPD Network metaregression using only the risk score

Development of prognostic models

Two different prognostic models for comparable reasons

LASSO model

1. Prognostic factors:

Selected via LASSO method

2. Shrinkage of coefficients:

LASSO shrinkage of coefficients

© The HTx Consortium 2019-2023. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement № 825162.

Pre-specified model

1. Prognostic factors:

14 prognostic factors identified by Pellegrini et al. for annualized relapse rate of MS.

These variables included in this model

2. Shrinkage of coefficients:

penalized maximum estimation likelihood

Included variables

Baseline risk score

¹³IPD Network meta-regression

Notation

Likelihood

i: Individuals

 $Y_{ijk} \sim Bernoulli(p_{ijk})$

j: study

k: treatment

 b_i : baseline treatment in study j

B: Individual level covariate regression term for Risk / the impact of Risk as prognostic factor

 D_{b_jk} : the treatment effect of treatment k versus placebo / **fixed effect**

 G_{b_jk} : The interaction of treatment and risk. Different for each treatment vs study's control / the impact of Risk as effect modifier

$$logit(p_{ijk}) = \begin{cases} u_j + B \times (logitR_{ij} - \overline{logitR_j}) & if \ k = b_j \\ u_j + D_{b_jk} + B \times (logitR_{ij} - \overline{logitR_j}) + G_{b_jk} \times (logitR_{ij} - \overline{logitR_j}), & if \ k \neq b_j \end{cases}$$

Saramago et al., 2012

1PD Network meta-regression

Results: Estimation of model parameters

OR for relapse for one unit increase in logit-risk in untreated patients (placebo) - $(\exp(B)) = 3.32$

	OR for relapse versus placebo at the study mean risk (exp(D))	OR versus placebo for one unit of increase in the logit risk (exp(G))
Natalizumab	0.18	0.67
Glatiramer Acetate	0.41	0.87
Dimethyl Fumarate	0.43	1.06

$$logit(p_{ijk}) = \begin{cases} u_j + B \times (logitR_{ij} - \overline{logitR_j}) & if \ k = b_j \\ u_j + D_{b_jk} + B \times (logitR_{ij} - \overline{logitR_j}) + G_{b_jk} \times (logitR_{ij} - \overline{logitR_j}), & if \ k \neq b_j \end{cases}$$

Predicted relapse rate by baseline risk score

Treatment	Mean	Less than 25% Risk	More than 75%
Natalizum ab	29%	12%	48%
Glatiramer Acetate	41%	10%	60%
Dimethyl Fumarate	39%	9%	62%

Best treatment
Dimethyl
fumarate 3% Absolute
benefit
compared to
Natalizumab

Best
treatment
Natalizumab14% Absolute
benefit
compared to
Dimethyl
Fumarate

Further research

Treatments

Placebo

Dimethyl Fumarate Predicted Outcome A

Glatirame r acetate

Predicted Outcome B

Natalizu mab

Predicted Outcome C

Predicted Outcome

Validation methods

New External
Dataset
IPD from Swiss
MS Cohort

HTE

Prognostic model

 $h(y_i) = \beta_o + \sum_{j=1}^n \beta_j \times PF_{ij}$

#STAGE1

Risk score

Prediction model using IPD Network meta-regression using only the risk score

Combination of AD and IPD

#STAGE2

26 studies - Published reports (Tramacere, 2018)

R-Shiny app

https://cinema.ispm.unibe.ch/shinies/koms/