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i1 Background

— Over 2.5 Quintilian bytes of data are created every day
— Benefits of data:

— Solve problems

— Maintain performances

— Improve existing processes

— Finding new knowledge

— Verify previously made verdicts
— As of 2013 only 0.5% of the total data was analysed

— No accessibility to data

— Sensitive data
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7 Data accesibility
— Sensitive information could be utilized for unethical activities

— Clinical data is required to be anonymized before leaving the
hospital

— Altering and removing explicit identifiers
— A person can still be re-identified by data linking [1]

— Use data aggregation techniques and induce random noise to
the data

— Noise can often be removed by averaging responses for
carefully selected query sets

— Distortion of the relationship between variables



™ Clinical Data

— Complex content and structure of modern healthcare databases
— Expense of producing and sustaining comprehensive databases

— Data anonymization techniques are not foolproof and hinder the
opportunity of personalized evaluations

— Patient’s identity must be relinked to the data analytic results
— Medical data cannot be fully and irreversibly anonymized
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1 Synthpop

— Synthetic data set is created by replacing some or all observed values
by sampling from an appropriate probability distribution, conditional on:

— The variable to be synthesized,

— The values from all previously synthesized columns of the original
data set, and

— The fitted parameters of the conditional distribution (simple
synthesis)

or
— posterior predictive distribution of parameters (proper synthesis)

— while retaining the statistical properties of the original data set and
relationships between the variables
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1 Impacts of Data Synthesis

— Utility Measures of Data

— General Utility
— Overall similarities in the statistical properties and
multivariate relationships

— Specific Utility
— Performance similarity of a fitted model
H, : C*{t(D),t(S;)} = «a, forall t € [0, 7]
H, : C*{t(D), t(S))} < «, forany t € [0, 7]

Let D denote an original data set, and Si denotes a synthetic data set where i indicates the index for
synthetic data produced with the different synthesizing method. Let t denote a vector of tests which returns
a statistic, and C* be a comparison function which returns a p — value. Finally, comparing the output of C*

with a, a threshold value for the level of significance. The « is set to 0.05 for all tests.
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1 Impacts of Data Synthesis

— Quality of Information content
— Entropy
H(X) = - ) Px(x;)logyPx (x;)
— If the system moves a\;vay from equally likely outcomes or
Introduces some predictability, the entropy goes down
— Mutual Information
I(X;Y)=H(Y) - H(Y|X)

— The amount of information or reduction in uncertainty that
one random variable provides about the other
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"1 Type 1 Diabetes Prediction and Prevention data

set (DIPP)

— Finland has the highest incidence of Type 1 Diabetes (T1D) in the
world amongst young children. Approximately 72 in every 100,000
children under the age of 15 years

— The DIPP Study was established in 1994

— Population-based long-term clinical follow-up study that consists of
screening newborns for increased genetic risk for diabetes

— Predict the probability of the positivity of autoantibodies before the
age of 15 years
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7 Synthesis of DIPP data set

— Synthesis using 5 different methods

Synthetic data Method Description
SynD1 "cart" classification and regression tree
SynD2 "ctree" classification tree
SynD3 "rf" random forest
SynD4 "bag" bagging
" ., | parametric* method to each variable
Syl PAFRCEELG based on their data type

— Data set was divided into three splits before model fitting, 75.0% of
data for training, 12.5% for validation, and 12.5% for testing



NV Data set Confusion Matrix Evaluation Parameter | Accuracy
Original ; Area Under
| || | ||
@ S e c If I C U t I I I t Data Predicted labels | F1 score ROC 0.87
Negative | Positive
Negative | 89 16 0.85 0.95
Positive | 5 56 0.82
" . Area Under
—_ Perfo rmance Of SynthetIC SynD1 Predicted labels | F1 score ROC 0.88
. Negative | Positive
and or|g|na| data on Negative | 83 19 0.88 0.93
. Positive | 1 63 0.85
G ra d I e n t B 00 Sted SynD2 Predicted labels | F1 score Are; (I)Jcl:‘lder 0.86
reg reSS I O n M Od e | Negative :’;gaﬁve gg = 0.87 0.93
Positive | 3 61 0.82
— CART performs best out of [ Predicted lbels | Fi score | AR0R0EF | g0
a | I 5 m et h O d S Negative IS\I;gative f;snive 0.91 0.95
Positive | 4 60 0.87
Data set | P-value SynD4 Predicted labels | F1 score A“; ggder 0.93
SynDl 0.0965496 Negative | Positive
Negative | 90 12 0.92 0.97
S)’DDZ 0.0485093 Positive | 0 64 0.89
SYnD3 0.0026730 SynD5 Predicted labels | F1score | 2 At 0.88
SynD Roe
4 | 0.0288157 : —
Negative | Positive
SynD5 | 0.1755973 Negative | 98 4 0.85 0.92
Positive | 15 49 0.78
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1 General Utility
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1 Uniform Maniford Approximation and

Projection
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77 Quality of Information content

— Entropy

— Entropy/Uncertainty is maximum
when all outcomes are equally
likely i

— Variables such as the age of o}
mother at the time of birth, growth
rate of height and weight had a 6
decrease in entropy by

Entropy bits for each feature vector

approximately one bit o

— Mutual Information 2t
— MI between original and synthetic

datasets[2][3] remained "o

unchanged
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Thank you!
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