

A two-stage prediction model for heterogeneous effects for many treatment options

Konstantina Chalkou – University of Bern, Matthias Egger - University of Bern, Fabio Pellegrini – Biogen International GmbH, Andrea Manca – University of York, Salanti Georgia - University of Bern

This work was supported and funded by the European Union/HTx Horizon 2020 project

Motivation: Effectiveness of drugs in Relapsing-Remitting Multiple Sclerosis (MS)

- Several drugs, compared in Network Meta-Analyses (NMA)
 - Tramacere I. et al., 2015
- We focus on *Dimethyl fumarate*, *Glatiramer acetate*, and *Natalizumab*
- Outcome: Relapse MS in 2 years (Yes/No)
- We want to find the drug that minimizes the risk of relapse, subject to patient characteristics
 - Previous evidence suggests that patients at different age groups and at different stages of the disease might respond differently to the same treatment → Heterogeneous Treatment Effects

Aim

To develop a *two-stage* evidence synthesis *prediction model* to predict the most likely outcome under several possible treatment options while accounting for patients' characteristics using *individual participant data network meta-regression* with *risk scores*

Treatments Predicted Effect Dimethyl A **Fumarate Glatiramer Predicted Effect** acetate В **Predicted Effect** Natalizumab C **Predicted Effect Placebo** D

Data

Two-stage model

- 1. Build the *prognostic score model*
- 2. Use the risk score in the *Individual Participant Data Network meta-regression*

Step 1: Build the prognostic score model (in R using packages glmnet, pentrace)

Fit various models

Fit various models using 2 shrinkage approaches

Results: Model selection

Select the best model with response to predictive ability and calibration (500 bootstraps & correction for optimism)

Model & Shrinkage method	c-index	Calibration slope
Model1 uniform shrinkage	0.6458	0.888
Model1 penalized shrinkage	0.6480	1.004
Model2 uniform shrinkage	0.6485	0.887
Model2 penalized shrinkage	0.6497	1.004
Model3 uniform shrinkage	0.6397	0.758
Model3 penalized shrinkage	0.6425	0.912
Model4 uniform shrinkage	0.6277	0.935
Model4 penalized shrinkage	0.6281	1.004
Model5 uniform shrinkage	0.6254	0.882
Model5 penalized shrinkage	0.6263	0.988

Results: Model selection

Age

Weight

Expanded disability status scale

Splines(No. of relapses 3 years prior to study)

Months since recent Pre-Study relapse

Prior MS treatment group

Region

Baseline 9 Hole Peg Test
Average score

Baseline Gadolinium Lesions

Baseline Short Form (SF) 36 Health Survey Physical Component Summary (PCS)

Baseline Sensory
Functional Systems Scores
(FSS)

Baseline Actual Distance Walked

Results: Distribution of Risk

The distribution of the Risk in the whole dataset

Risk per relapse or non-relapse (Risk as a prognostic factor)

Results: Distribution of Risk

The Risk per arm and relapse non-relapse (risk as effect modifier)

Relapse2year 🖽 o 🖽 1

Risk score in AFFIRM study

Results: Distribution of Risk

The Risk per arm and relapse non-relapse (risk as effect modifier)

Step 2: Use the risk score in the IPD Network meta-regression (In JAGS using self-programmed routines)

IPD Network meta-regression

Notation

Likelihood

i: Individuals

 $Y_{ijk} \sim Bernoulli(p_{ijk})$

j: study

k: treatment

 b_j : baseline treatment in study j

B: Individual level covariate regression term for Risk / the impact of Risk as prognostic factor

 D_{b_ik} : the treatment effect of treatment k versus placebo / fixed effect

 G_{b_jk} : The interaction of treatment and risk. Different for each treatment vs study's control / the impact of Risk as effect modifier

$$logit(p_{ijk}) = \begin{cases} u_j + B \times (logitR_{ij} - \overline{logitR_j}) & if \ k = b_j \\ u_j + D_{b_jk} + B \times (logitR_{ij} - \overline{logitR_j}) + G_{b_jk} \times (logitR_{ij} - \overline{logitR_j}), & if \ k \neq b_j \end{cases}$$

Saramago et al., 2012

IPD Network meta-regression

Results: Estimation of model parameters

OR for relapse for one unit increase in logit-risk in untreated patients (placebo) - (exp(B)) = 3.38

	OR for relapse versus placebo at the study mean risk (exp(D))	OR versus placebo for one unit of increase in the logit risk (exp(G))
Natalizumab	0.27	0.68
Glatiramer Acetate	0.50	0.92
Dimethyl Fumarate	0.40	1.14

$$logit(p_{ijk}) = \begin{cases} u_j + B \times (logitR_{ij} - \overline{logitR_j}) & if \ k = b_j \\ u_j + D_{b_jk} + B \times (logitR_{ij} - \overline{logitR_j}) + G_{b_jk} \times (logitR_{ij} - \overline{logitR_j}), & if \ k \neq b_j \end{cases}$$

Predicted relapse rate by baseline risk score

Treatment	Mean	Less than 25% Risk	More than 75%
Natalizum ab	29%	12%	48%
Glatiramer Acetate	41%	10%	60%
Dimethyl Fumarate	39%	9%	62%

Best treatment

Dimethyl
fumarate 3% Absolute
benefit
compared to
Natalizumab

Best
treatment
Natalizumab14% Absolute
benefit
compared to
Dimethyl
Fumarate

Github repository - https://github.com/htx-r

Conclusions and further research

Future research

- Comparison with effect modification method
- Use of Swiss MS cohort to build the risk score
- External validation of prediction model
- R-shiny app

Conclusions

- This is the first prediction model that uses *risk score* from a nested prognostic model *within a IPD Network meta-regression* framework
- The risk of relapse at baseline is important for the optimal treatment choice and moderates the absolute benefit
 - **Dimethyl fumarate** seems to be the optimal choice for low-risk patients, whereas **Natalizumab** seems to be the optimal choice for high-risk patients